1,477
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Bitumen binders modified with chemically-crosslinked chitosan

ORCID Icon, , , , &
Pages 3-18 | Received 11 Oct 2022, Accepted 25 Jan 2023, Published online: 21 Feb 2023

References

  • Andrzejuk, W., Szewczak, A., Fic, S., & Łagód, G. (2020). Wettability of asphalt concrete with natural and recycled aggregates from sanitary ceramics. Materials, 13(17), 3799, https://doi.org/10.3390/ma13173799
  • Arabani, M., Ranjbar Pirbasti, Z., & Hamedi, G. H. (2020). Investigating the impact of zeolite on reducing the effects of changes in runoff acidity and the moisture sensitivity of asphalt mixtures. Construction and Building Materials, 268, 121071, https://doi.org/10.1016/j.conbuildmat.2020.121071
  • Bao, D. X., Yu, Y. Y., & Zhao, Q. M. (2019). Evaluation of the chemical composition and rheological properties of bio-asphalt from different biomass sources. Road Materials and Pavement Design, 21(7), 1829–1843. https://doi.org/10.1080/14680629.2019.1568287
  • Bhasin, A., Masad, E., Little, D., & Lytton, R. (2006). Limits on adhesive bond energy for improved resistance of hot-mix asphalt to moisture damage. Transportation Research Record, 1970(1), 3–13. https://doi.org/10.3141/1970-03
  • Camargo, I. G. d. N., Dhia, T. b., Loulizi, A., Hofko, B., & Mirwald, J. (2021). Anti-aging additives: Proposed evaluation process based on literature review. Road Materials and Pavement Design, 22(S1), S134–S153. https://doi.org/10.1080/14680629.2021.1906738
  • Chen, C., Podolsky, J. H., Williams, R. C., & Cochran, E. W. (2018). Rheological properties and effects of aging on acrylated epoxidised soybean oil monomer-modified asphalt binder. Road Materials and Pavement Design, 21(2), 347–373. https://doi.org/10.1080/14680629.2018.1491883
  • Chen, Y., Dong, S., Wang, H., Gao, R., & You, Z. (2020). Using surface free energy to evaluate the fracture performance of asphalt binders. Construction and Building Materials, 240, 118004. https://doi.org/10.1016/j.conbuildmat.2020.118004
  • Concha, J. L., Arteaga-Pérez, L. E., Alpizar-Reyes, E., Segura, C., Gonzalez-Torre, I., Kanellopoulos, A., & Norambuena-Contreras, J. (2022). Effect of rejuvenating oil type on the synthesis and properties of alginate-based polynuclear capsules for asphalt self-healing. Road Materials and Pavement Design, 1 . https://doi.org/10.1080/14680629.2022.2092026
  • Cuadri, A. A., Navarro, F. J., & Partal, P. (2020). Synergistic ethylcellulose/polyphosphoric acid modification of bitumen for paving applications. Materials and Structures/Materiaux et Constructions, 53(1), 1–13. https://doi.org/10.1617/s11527-019-1437-7
  • Eberhardsteiner, L., Füssl, J., Hofko, B., Handle, F., Hospodka, M., Blab, R., & Grothe, H. (2015). Influence of asphaltene content on mechanical bitumen behavior: Experimental investigation and micromechanical modeling. Materials and Structures/Materiaux et Constructions, 48(10), 3099–3112. https://doi.org/10.1617/s11527-014-0383-7
  • Fawcett, A. H., & McNally, T. (2003). Polystyrene and asphaltene micelles within blends with a bitumen of an SBS block copolymer and styrene and butadiene homopolymers. Colloid and Polymer Science, 281(3), 203–213. https://doi.org/10.1007/s00396-002-0762-4
  • Gallego, J., Rodríguez-Alloza, A. M., & Saiz-Rodríguez, L. (2020). Evaluation of warm rubberized stone mastic asphalt mixtures through the Marshall and Gyratory compactors. Materials, 13(2), 265. https://doi.org/10.3390/ma13020265
  • Habal, A., & Singh, D. (2021). Establishing threshold value of surface free energy and binder bond strength parameters for basaltic asphalt mixes. Road Materials and Pavement Design, 23(8), 1877–1899. https://doi.org/10.1080/14680629.2021.1925576
  • Hernández, N., Williams, R. C., & Cochran, E. W. (2014). The battle for the “green” polymer. Different approaches for biopolymer synthesis: Bioadvantaged vs. bioreplacement. Organic and Biomolecular Chemistry, 12(18), 2834–2849. https://doi.org/10.1039/c3ob42339e
  • Holleran, I., Wilson, D. J., Masad, E., Holleran, G., & Alrashydah, E. (2021). Effect of bio-rejuvenator on recycled porous asphalt mixes. Road Materials and Pavement Design, 340. https://doi.org/10.1080/14680629.2021.2017331
  • Hou, X., Lv, S., Chen, Z., & Xiao, F. (2018). Applications of Fourier transform infrared spectroscopy technologies on asphalt materials. Measurement, 121(January), 304–316. https://doi.org/10.1016/j.measurement.2018.03.001
  • Hu, Q., & Luo, Y. (2021). Chitosan-based nanocarriers for encapsulation and delivery of curcumin: A review. International Journal of Biological Macromolecules, 179, 125–135. https://doi.org/10.1016/j.ijbiomac.2021.02.216
  • Jiménez del Barco Carrión, A., Carvajal-Muñoz, J. S., Lo Presti, D., & Airey, G. (2019). Intrinsic adhesive and cohesive assessment of the moisture sensitivity of bio-rejuvenated recycled asphalt binders. Road Materials and Pavement Design, 20(sup1), S347–S364. https://doi.org/10.1080/14680629.2019.1588778
  • Lesueur, D. (2009). The colloidal structure of bitumen: Consequences on the rheology and on the mechanisms of bitumen modification. Advances in Colloid and Interface Science, 145(1–2), 42–82. https://doi.org/10.1016/j.cis.2008.08.011
  • Li, R., Chen, J., Zhou, T., & Pei, J. (2017). Optimal synthetic conditions for oxetane-substituted chitosan (OXE-CHI) and polyethylene glycol (PEG) network self-healing agent. Materials Express, 7(5), 411–416. https://doi.org/10.1166/MEX.2017.1387
  • Liu, S., Yu, X., & Dong, F. (2017). Evaluation of moisture susceptibility of foamed warm asphalt produced by water injection using surface free energy method. Construction and Building Materials, 131, 138–145. https://doi.org/10.1016/j.conbuildmat.2016.11.072
  • Malinowski, S., Jaroszyńska-Wolińska, J., & Herbert, P. A. F. (2019). Theoretical insight into plasma deposition of laccase bio-coating formation. Journal of Materials Science, 54(15), 10746–10763. https://doi.org/10.1007/s10853-019-03641-2
  • Malinowski, S., Wróbel, M., Bandura, L., Woszuk, A., & Franus, W. (2022). Use of new green bitumen modifier for asphalt mixtures recycling. Materials 2022, 15(17), 6070. https://doi.org/10.3390/MA15176070
  • Mishra, V., Singh, D., & Habal, A. (2020). Investigating the condition number approach to select probe liquids for evaluating surface free energy of bitumen. International Journal of Pavement Research and Technology, 13(1), 10–19. https://doi.org/10.1007/s42947-019-0097-x
  • Mousavi, M., Abdollahi, T., Pahlavan, F., & Fini, E. H. (2016). The influence of asphaltene-resin molecular interactions on the colloidal stability of crude oil. Fuel, 183, 262–271. https://doi.org/10.1016/j.fuel.2016.06.100
  • Nciri, N., Shin, T., Lee, H., & Cho, N. (2018). Potential of waste oyster shells as a novel biofiller for hot-mix asphalt. Applied Sciences (Switzerland), 8(3), 415, https://doi.org/10.3390/app8030415
  • Pérez, I. P., Rodríguez Pasandín, A. M., Pais, J. C., & Alves Pereira, P. A. (2019). Use of lignin biopolymer from industrial waste as bitumen extender for asphalt mixtures. Journal of Cleaner Production, 220, 87–98. https://doi.org/10.1016/j.jclepro.2019.02.082
  • Porto, M., Caputo, P., Loise, V., Eskandarsefat, S., Teltayev, B., & Rossi, C. O. (2019). Bitumen and bitumen modification: A review on latest advances. Applied Sciences (Switzerland), 9(4), 742.  https://doi.org/10.3390/app9040742
  • Sheu, E. Y. (1996). Physics of asphaltene micelles and microemulsions - theory and experiment. Journal of Physics Condensed Matter, 8(25 SUPPL. A), A125–A141. https://doi.org/10.1088/0953-8984/8/25A/009
  • Tu, L. L., Wu, S. P., Liu, G., Zhou, X. X., & Ma, S. K. (2016). Effect of the welan gum biopolymer on rheological properties and storage stability of bitumens. Journal of Testing and Evaluation, 44(6), 2211–2218. https://doi.org/10.1520/JTE20150119
  • van Oss, C. J., Chaudhury, M. K., & Good, R. J. (1988). Interfacial Lifshitz—van der Waals and polar interactions in macroscopic systems. Chemical Reviews, 88(6), 927–941. https://doi.org/10.1021/cr00088a006
  • Wang, P., Zhai, F., Dong, Z. J., Wang, L. Z., Liao, J. P., & Li, G. R. (2018). Micromorphology of asphalt modified by polymer and carbon nanotubes through molecular dynamics simulation and experiments: Role of strengthened interfacial interactions. Energy and Fuels, 32(2), 1179–1187. https://doi.org/10.1021/acs.energyfuels.7b02909
  • Wen, Y., Wang, Y., Zhao, K., & Sumalee, A. (2017). The use of natural rubber latex as a renewable and sustainable modifier of asphalt binder. International Journal of Pavement Engineering, 18(6), 547–559. https://doi.org/10.1080/10298436.2015.1095913
  • Woszuk, A., Wróbel, M., Bandura, L., & Franus, W. (2020). Brick debris dust as an ecological filler and Its effect on the durability of asphalt Mix. Materials, 13(21), 5023. https://doi.org/10.3390/ma13215023
  • Wróbel, M., Woszuk, A., Ratajczak, M., & Franus, W. (2020). Properties of reclaimed asphalt pavement mixture with organic rejuvenator. Construction and Building Materials, 271, 121514. https://doi.org/10.1016/j.conbuildmat.2020.121514
  • Yu, X., Zhang, J., & Zheng, Y. (2021). Perchlorate adsorption onto epichlorohydrin crosslinked chitosan hydrogel beads. Science of the Total Environment, 761(xxxx), 143236. https://doi.org/10.1016/j.scitotenv.2020.143236
  • Zaumanis, M., Mallick, R., & Frank, R. (2013). Evaluation of rejuvenator’s effectiveness with conventional mix testing for 100% reclaimed asphalt pavement mixtures. Transportation Research Record, 2370(1), 17–25. https://doi.org/10.3141/2370-03
  • Zhu, J., Birgisson, B., & Kringos, N. (2014). Polymer modification of bitumen: Advances and challenges. European Polymer Journal, 54(1), 18–38. https://doi.org/10.1016/j.eurpolymj.2014.02.005