343
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Feasibility of using bio-oil from biodiesel production for bio-bitumen creation

, , , , , & show all
Pages 209-228 | Received 09 Oct 2022, Accepted 09 Feb 2023, Published online: 21 Feb 2023

References

  • Airey, G. (2003). Rheological properties of styrene butadiene styrene polymer modified road bitumens★. Fuel, 82(14), 1709–1719. https://doi.org/10.1016/S0016-2361(03)00146-7
  • Al-Sabaeei, A. M., Napiah, M., Sutanto, M., Alaloul, W., Md Yusoff, N. I., Imran Khan, M., & Modibbo Saeed, S. (2021b). Physicochemical, rheological and microstructural properties of nano-silica modified Bio-asphalt. Construction and Building Materials, 297), https://doi.org/10.1016/j.conbuildmat.2021.123772
  • Al-Sabaeei, A. M., Napiah, M. B., Sutanto, M. H., Alaloul, W. S., Yusoff, N. I. M., Khairuddin, F. H., & Memon, A. M. (2021a). Evaluation of the high-temperature rheological performance of tire pyrolysis oil-modified bio-asphalt. International Journal of Pavement Engineering, https://doi.org/10.1080/10298436.2021.1931200
  • Bao, D. X., Yu, Y. Y., & Zhao, Q. M. (2020). Evaluation of the chemical composition and rheological properties of bio-asphalt from different biomass sources. Road Materials and Pavement Design, 21(7), 1829–1843. https://doi.org/10.1080/14680629.2019.1568287
  • Brovelli, C., Crispino, M., Pais, J., & Pereira, P. (2015). Using polymers to improve the rutting resistance of asphalt concrete. Construction and Building Materials, 77, 117–123. https://doi.org/10.1016/j.conbuildmat.2014.12.060
  • Brovelli, C., Crispino, M., Pais, J. C., & Pereira, P. A. A. (2014). Assessment of fatigue resistance of additivated asphalt concrete incorporating fibers and polymers. Journal of Materials in Civil Engineering, 26(3), 554–558. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000837
  • Brovelli, C., Hilliou, L., Hemar, Y., Pais, J., Pereira, P., & Crispino, M. (2013). Rheological characteristics of EVA modified bitumen and their correlations with bitumen concrete properties. Construction and Building Materials, 48, 1202–1208. https://doi.org/10.1016/j.conbuildmat.2013.07.032
  • Cai, F., Feng, Z. g., Li, Y., Yao, D., Lin, M., & Li, X. (2022). Properties and mechanism of Re-refined engine oil bottom rejuvenated aged asphalt. Construction and Building Materials, 352, 129068. https://doi.org/10.1016/j.conbuildmat.2022.129068
  • Cao, L., Su, Z., Liu, R., & Zhou, T. (2022). Optimized formulation of asphalt compound containing bio-oil and shredded rubber. Journal of Cleaner Production, 378, 134591. https://doi.org/10.1016/j.jclepro.2022.134591
  • Chen, Y., Ji, C., Wang, H., & Su, Y. (2018). Evaluation of crumb rubber modification and short-term aging on the rutting performance of bioasphalt. Construction and Building Materials, 193, 467–473. https://doi.org/10.1016/j.conbuildmat.2018.10.192
  • Clarke, F. J. J., Birch, J. R., Chunnilall, C. J., & Smart, M. P. (2002). FTIR measurements—standards and accuracy. Vibrational Spectroscopy, 30(1), 25–29. https://doi.org/10.1016/S0924-2031(02)00035-8
  • Colbert, B., Mohd Hasan, M. R., & You, Z. (2016). A hybrid strategy in selecting diverse combinations of innovative sustainable materials for asphalt pavements. Journal of Traffic and Transportation Engineering (English Edition), 3(2), 89–103. https://doi.org/10.1016/j.jtte.2016.02.001
  • Concha, J. L., Arteaga-Pérez, L. E., Gonzalez-Torre, I., Liu, Q., & Norambuena-Contreras, J. (2022). Biopolymeric capsules containing different oils as rejuvenating agents for asphalt self-healing: A novel multivariate approach. Polymers, 14(24), 5418. https://doi.org/10.3390/polym14245418
  • Dantas Neto, S. A., Farias, M. M., Pais, J. C., Pereira, P. A. A., & Sousa, J. B. (2006). Influence of crumb rubber and digestion time on the asphalt rubber binders. Road Materials and Pavement Design, 7(2), 131–148. https://doi.org/10.3166/rmpd.7.131-148
  • Dantas-Neto, S. A. S. A., Farias, M. M. M. M., Pais, J. C. J. C., & Pereira, P. A. A. P. A. A. (2006). Dense graded hot mixes using asphalt-rubber binders with high rubber contents. Road Materials and Pavement Design, 7(1), 29–46. https://doi.org/10.1080/14680629.2006.9690025
  • Deng, M., Cao, X., Li, Z., Li, X., Yang, X., & Tang, B. (2022). Investigating properties and intermolecular interactions of sludge bio-oil modified asphalt. Journal of Molecular Liquids, 360), https://doi.org/10.1016/j.molliq.2022.119415
  • Fernandes, S. R. M., Silva, H. M. R. D., & Oliveira, J. R. M. (2018). Developing enhanced modified bitumens with waste engine oil products combined with polymers. Construction and Building Materials, 160, 714–724. https://doi.org/10.1016/j.conbuildmat.2017.11.112
  • Gao, J., Wang, H., You, Z., Hasan, M. R. M., Lei, Y., & Irfan, M. (2018). Rheological behavior and sensitivity of wood-derived bio-oil modified asphalt binders. Applied Sciences, 8(6), https://doi.org/10.3390/app8060919
  • Hofko, B., Porot, L., Falchetto Cannone, A., Poulikakos, L., Huber, L., Lu, X., Mollenhauer, K., & Grothe, H. (2018). FTIR spectral analysis of bituminous binders: Reproducibility and impact of ageing temperature. Materials and Structures, 51(2), 45. https://doi.org/10.1617/s11527-018-1170-7
  • Hu, C., Lin, W., Partl, M., Wang, D., Yu, H., & Zhang, Z. (2018). Waste packaging tape as a novel bitumen modifier for hot-mix asphalt. Construction and Building Materials, 193, 23–31. https://doi.org/10.1016/j.conbuildmat.2018.10.170
  • Lamontagne, J., Dumas, P., Mouillet, V., & Kister, J. (2001). Comparison by Fourier transform infrared (FTIR) spectroscopy of different ageing techniques: Application to road bitumens. Fuel, 80(4), 483–488. https://doi.org/10.1016/S0016-2361(00)00121-6
  • Lei, Y., Wang, H., Chen, X., Yang, X., You, Z., Dong, S., & Gao, J. (2018). Shear property, high-temperature rheological performance and low-temperature flexibility of asphalt mastics modified with bio-oil. Construction and Building Materials, 174, 30–37. https://doi.org/10.1016/j.conbuildmat.2018.04.094
  • Lei, Z., Bahia, H., Yi-qiu, T., & Ling, C. (2017). Effects of refined waste and bio-based oil modifiers on rheological properties of asphalt binders. Construction and Building Materials, 148, 504–511. https://doi.org/10.1016/j.conbuildmat.2017.05.101
  • Li, J., Zhang, F., Liu, Y., Muhammad, Y., Su, Z., Meng, F., & Chen, X. (2019). Preparation and properties of soybean bio-asphalt/SBS modified petroleum asphalt. Construction and Building Materials, 201, 268–277. https://doi.org/10.1016/j.conbuildmat.2018.12.206
  • Lo Presti, D. (2013). Recycled tyre rubber modified bitumens for road asphalt mixtures: A literature review. Construction and Building Materials, 49, 863–881. https://doi.org/10.1016/j.conbuildmat.2013.09.007
  • Lo Presti, D., & Airey, G. (2013). Tyre rubber-modified bitumens development: The effect of varying processing conditions. Road Materials and Pavement Design, 14(4), 888–900. https://doi.org/10.1080/14680629.2013.837837
  • Lv, S., Liu, J., Peng, X., & Jiang, M. (2021). Laboratory experiments of various bio-asphalt on rheological and microscopic properties. Journal of Cleaner Production, 320, 128770. https://doi.org/10.1016/j.jclepro.2021.128770
  • Margaritis, A., Tofani, G., Jacobs, G., Blom, J., Tavernier, S., Vuye, C., & Van den Bergh, W. (2019). On the applicability of ATR-FTIR microscopy to evaluate the blending between neat bitumen and bituminous coating of reclaimed asphalt. Coatings, 9(4), 240. https://doi.org/10.3390/coatings9040240
  • Meher, L. C., Vidya Sagar, D., & Naik, S. N. (2006). Technical aspects of biodiesel production by transesterification—a review. Renewable and Sustainable Energy Reviews, 10(3), 248–268. https://doi.org/10.1016/j.rser.2004.09.002
  • Metwally, M., & Raouf, M. A. (2010). Development of non-petroleum binders derived from fast pyrolysis bio-oils for use in flexible pavement. Iowa State University.
  • Pais, J., Lo Presti, D., Santos, C., Thives, L., & Pereira, P. (2019). The effect of prolonged storage time on asphalt rubber binder properties. Construction and Building Materials, 210, 242–255. https://doi.org/10.1016/j.conbuildmat.2019.03.155
  • Peralta, J., Hilliou, L., Silva, H. M. R. D. H. M. R. D., Machado, A. V. A. V., Pais, J. C. J. C., & Oliveira, J. R. M. J. R. M. (2010a). Rheological quantification of bitumen aging: Definition of a new sensitive parameter. Applied Rheology, 20(6), 63293. https://doi.org/10.3933/ApplRheol-20-63293
  • Peralta, J., Raouf, M., Tang, S., & Williams, R. (2012). Bio-renewable asphalt modifiers and asphalt substitutes. Sustainable Bioenergy and Bioproducts. Green Energy and Technology, 62, 89–115. https://doi.org/10.1007/978-1-4471-2324-8_6
  • Peralta, J., Silva, H. M. R. D. H. M. R. D., Machado, A. V. A. V., Pais, J., Pereira, P. A. A. P. A. A., & Sousa, J. B. J. B. (2010b). Changes in rubber due to its interaction with bitumen when producing asphalt rubber. Road Materials and Pavement Design, 11(4), 1009–1031. https://doi.org/10.1080/14680629.2010.9690317
  • Pérez, I. P. I. P., Rodríguez Pasandín, A. M. A. M., Pais, J. C. J. C., & Alves Pereira, P. A. P. A. (2019). Use of lignin biopolymer from industrial waste as bitumen extender for asphalt mixtures. Journal of Cleaner Production, 220, 87–98. https://doi.org/10.1016/j.jclepro.2019.02.082
  • Qin, Q., Schabron, J. F., Boysen, R. B., & Farrar, M. J. (2014). Field aging effect on chemistry and rheology of asphalt binders and rheological predictions for field aging. Fuel, 121, 86–94. https://doi.org/10.1016/j.fuel.2013.12.040
  • Qu, X., Liu, Q., Wang, C., Wang, D., & Oeser, M. (2018). Effect of co-production of renewable biomaterials on the performance of asphalt binder in macro and micro perspectives. Materials, 11(2), https://doi.org/10.3390/ma11020244
  • Santos, C. R., Pais, J. C., Ribeiro, J., & Pereira, P. (2020). Evaluating the properties of bioasphalt produced with Bio-oil derived from biodiesel production. In C. Raab (Ed.), Lecture Notes in Civil Engineering (Vol. 76, pp. 397–407). Springer. https://doi.org/10.1007/978-3-030-48679-2_38
  • Santos, F. B., Faxina, A. L., & Soares, S. d. A. (2021). Soy-based rejuvenated asphalt binders: Impact on rheological properties and chemical aging indices. Construction and Building Materials, 300), https://doi.org/10.1016/j.conbuildmat.2021.124220
  • Su, N., Xiao, F., Wang, J., Cong, L., & Amirkhanian, S. (2018). Productions and applications of bio-asphalts – A review. Construction and Building Materials, 183, 578–591. https://doi.org/10.1016/j.conbuildmat.2018.06.118
  • Sun, Z., Yi, J., Huang, Y., Feng, D., & Guo, C. (2016). Properties of asphalt binder modified by bio-oil derived from waste cooking oil. Construction and Building Materials, 102, 496–504. https://doi.org/10.1016/j.conbuildmat.2015.10.173
  • Thives, L. P., Pais, J. C., Pereira, P. A. A., Trichês, G., & Amorim, S. R. (2013). Assessment of the digestion time of asphalt rubber binder based on microscopy analysis. Construction and Building Materials, 47, 431–440. https://doi.org/10.1016/j.conbuildmat.2013.05.087
  • Wang, H., Ma, Z., Chen, X., & Mohd Hasan, M. R. (2020). Preparation process of bio-oil and bio-asphalt, their performance, and the application of bio-asphalt: A comprehensive review. Journal of Traffic and Transportation Engineering (English Edition), https://doi.org/10.1016/j.jtte.2020.03.002
  • Williams, R. C., Peralta, J., & Puga, K. (2015). Development of Non-Petroleum-Based Binders for Use in Flexible Pavements-Phase II Final Report Iowa Department of Transportation (InTrans Project 12-447) Federal Highway Administration.
  • Wróbel, M., Woszuk, A., Ratajczak, M., & Franus, W. (2021). Properties of reclaimed asphalt pavement mixture with organic rejuvenator. Construction and Building Materials, 271, 121514. https://doi.org/10.1016/j.conbuildmat.2020.121514
  • Yang, X., & You, Z. (2015). High temperature performance evaluation of bio-oil modified asphalt binders using the DSR and MSCR tests. Construction and Building Materials, 76, 380–387. https://doi.org/10.1016/j.conbuildmat.2014.11.063
  • Yut, I., & Zofka, A. (2011). Attenuated total reflection (ATR) fourier transform infrared (FT-IR) spectroscopy of oxidized polymer-modified bitumens. Applied Spectroscopy, 65(7), 765–770. https://doi.org/10.1366/10-06217
  • Yut, I., & Zofka, A. (2014). Correlation between rheology and chemical composition of aged polymer-modified asphalts. Construction and Building Materials, 62, 109–117. https://doi.org/10.1016/j.conbuildmat.2014.03.043
  • Zargar, M., Ahmadinia, E., Asli, H., & Karim, M. R. (2012). Investigation of the possibility of using waste cooking oil as a rejuvenating agent for aged bitumen. Journal of Hazardous Materials, 233-234, 254–258. https://doi.org/10.1016/j.jhazmat.2012.06.021
  • Zeng, M., Li, J., Zhu, W., & Xia, Y. (2018). Laboratory evaluation on residue in castor oil production as rejuvenator for aged paving asphalt binder. Construction and Building Materials, 193, 276–285. https://doi.org/10.1016/j.conbuildmat.2018.10.204
  • Zhang, R., Wang, H., Gao, J., You, Z., & Yang, X. (2017). High temperature performance of SBS modified bio-asphalt. Construction and Building Materials, 144(July), 99–105. https://doi.org/10.1016/j.conbuildmat.2017.03.103
  • Zhang, R., Wang, H., Jiang, X., You, Z., Yang, X., & Ye, M. (2018a). Thermal storage stability of bio-oil modified asphalt. Journal of Materials in Civil Engineering, 30(4), https://doi.org/10.1061/(ASCE)MT.1943-5533.0002237
  • Zhang, R., You, Z., Wang, H., Chen, X., Si, C., & Peng, C. (2018b). Using bio-based rejuvenator derived from waste wood to recycle old asphalt. Construction and Building Materials, 189(September), 568–575. https://doi.org/10.1016/j.conbuildmat.2018.08.201
  • Zhang, R., You, Z., Wang, H., Ye, M., Khin, Y., & Si, C. (2019). The impact of bio-oil as rejuvenator for aged asphalt binder. Construction and Building Materials, 196, 134–143. doi:10.1016/j.conbuildmat.2018.10.168

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.