411
Views
3
CrossRef citations to date
0
Altmetric
Special Issue

Laboratory investigation of graphene modified asphalt efficacy to pavement performance

ORCID Icon, , , , & ORCID Icon
Pages 587-607 | Received 20 Oct 2022, Accepted 09 Feb 2023, Published online: 01 Mar 2023

References

  • AASHTOM323. (2017). Standard specification for superpave volumetric mix design. American Association of State Highway and Transportation Officials.
  • Ashish, P. K., & Singh, D. (2021). Use of nanomaterial for asphalt binder and mixtures: A comprehensive review on development, prospect, and challenges. Road Materials and Pavement Design, 22(3), 492–538. https://doi.org/10.1080/14680629.2019.1634634
  • ASTMC127. (2015). Standard test method for relative density (specific gravity) and absorption of coarse aggregate. American Society for Testing and Materials.
  • ASTMC128. (2015). Standard test method for relative density (specific gravity) and absorption of fine aggregate. American Society for Testing and Materials.
  • ASTMD2041. (2011). Standard test method for theoretical maximum specific gravity and density of bituminous paving mixtures. American Society for Testing and Materials.
  • ASTMD2726. (2017). Standard test method for bulk specific gravity and density of Non-absorptive compacted asphalt mixtures. American Society for Testing and Materials.
  • Berman, D., Erdemir, A., & Sumant, A. V. (2014). Graphene: A new emerging lubricant. Materials Today, 17(1), 31–42. https://doi.org/10.1016/j.mattod.2013.12.003
  • Bonaccorso, F., Colombo, L., Yu, G., Stoller, M., Tozzini, V., Ferrari, A. C., Ruoff, R. S., & Pellegrini, V. (2015). Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. science, 347(6217), 1246501. https://doi.org/10.1126/science.1246501
  • Buzea, C., Pacheco, I. I., & Robbie, K. (2007). Nanomaterials and nanoparticles: Sources and toxicity. Biointerphases, 2(4), MMR17–MMR71. https://doi.org/10.1116/1.2815690
  • Ghile, D. B. (2006). Effects of nanoclay modification on rheology of bitumen and on performance of asphalt mixtures.
  • Han, M., Li, J., Muhammad, Y., Hou, D., Zhang, F., Yin, Y., & Duan, S. (2018). Effect of polystyrene grafted graphene nanoplatelets on the physical and chemical properties of asphalt binder. Construction and Building Materials, 174, 108–119. https://doi.org/10.1016/j.conbuildmat.2018.04.082
  • Hanaor, D., Michelazzi, M., Chenu, J., Leonelli, C., & Sorrell, C. C. (2011). The effects of firing conditions on the properties of electrophoretically deposited titanium dioxide films on graphite substrates. Journal of the European Ceramic Society, 31(15), 2877–2885. https://doi.org/10.1016/j.jeurceramsoc.2011.07.007
  • Kim, K., Regan, W., Geng, B., Alemán, B., Kessler, B., Wang, F., Crommie, M., & Zettl, A. (2010). High-temperature stability of suspended single-layer graphene. Physica Status Solidi (RRL)–Rapid Research Letters, 4(11), 302–304. https://doi.org/10.1002/pssr.201000244
  • Le, J., Marasteanu, M., & Turos, M. (2016b). Graphene Nanoplatelet (GNP) reinforced asphalt mixtures: A Novel multifunctional pavement material.
  • Le, J.-L., Marasteanu, M., & Turos, M. (2016a). Experimental investigation of properties of graphene nanoplatelet-modified asphalt binders and mixtures.
  • Lee, C., Wei, X., Kysar, J. W., & Hone, J. (2008). Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 321(5887), 385–388. https://doi.org/10.1126/science.1157996
  • Lee, J. H., Avsar, A., Jung, J., Tan, J. Y., Watanabe, K., Taniguchi, T., Natarajan, S., Eda, G., Adam, S., & Castro Neto, A. H. (2015). Van der Waals force: A dominant factor for reactivity of graphene. Nano Letters, 15(1), 319–325. https://doi.org/10.1021/nl5036012
  • Moreno-Navarro, F., Sol-Sánchez, M., Gámiz, F., & Rubio-Gámez, M. (2018). Mechanical and thermal properties of graphene modified asphalt binders. Construction and Building Materials, 180, 265–274. https://doi.org/10.1016/j.conbuildmat.2018.05.259
  • Nazki, M. A., Chopra, T., & Chandrappa, A. K. (2020). Rheological properties and thermal conductivity of bitumen binders modified with graphene. Construction and Building Materials, 238, 117693. https://doi.org/10.1016/j.conbuildmat.2019.117693
  • Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Katsnelson, M. I., Grigorieva, I., Dubonos, S., & Firsov, A. A. (2005). Two-dimensional gas of massless Dirac fermions in graphene. Nature, 438(7065), 197–200. https://doi.org/10.1038/nature04233
  • Polaczyk, P., Han, B., Gong, H., Ma, Y., Xiao, R., Hu, W., & Huang, B. (2021). Influence of aggregate gradation on the compactability of asphalt mixtures utilizing locking point. Journal of Materials in Civil Engineering, 33(3), 04021005. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003609
  • Polaczyk, P., Han, B., Huang, B., Jia, X., & Shu, X. (2018). Evaluation of the hot mix asphalt compactability utilizing the impact compaction method. Construction and Building Materials, 187, 131–137. https://doi.org/10.1016/j.conbuildmat.2018.07.117
  • Polaczyk, P., Shu, X., Gong, H., & Huang, B. (2019). Influence of aggregates angularity on the locking point of asphalt mixtures. Road Materials and Pavement Design, 20(sup1), S183–S195. https://doi.org/10.1080/14680629.2019.1588151
  • Su, J.-F., Guo, Y.-D., Xie, X.-M., Zhang, X.-L., Mu, R., Wang, Y.-Y., & Tan, Y.-Q. (2019). Smart bituminous material combining anti-icing and self-healing functions using electrothermal graphene microcapsules containing oily rejuvenator. Construction and Building Materials, 224, 671–681. https://doi.org/10.1016/j.conbuildmat.2019.07.098
  • TDOT. (2015). Standard specifications for road and bridge construction.
  • Zhou, F., Im, S., Sun, L., & Scullion, T. (2017). Development of an IDEAL cracking test for asphalt mix design and QC/QA. Road Materials and Pavement Design, 18(sup4), 405–427. https://doi.org/10.1080/14680629.2017.1389082
  • Zhu, J., Zhang, K., Liu, K., & Shi, X. (2019). Performance of hot and warm mix asphalt mixtures enhanced by nano-sized graphene oxide. Construction and Building Materials, 217, 273–282. https://doi.org/10.1016/j.conbuildmat.2019.05.054

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.