149
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

2-D FEM thermomechanical coupling in the analysis of a flexible eRoad subjected to thermal and traffic loading

, &
Pages 230-247 | Received 03 Apr 2023, Accepted 19 Apr 2023, Published online: 16 May 2023

References

  • Aldammad, M., Ananiev, A., & Kalaykov, I. (2014). Current collector for heavy vehicles on electrified roads: Motion control. Journal of Asian Electric Vehicles, 13(2), 1725–1732. https://doi.org/10.4130/jaev.13.1725
  • Al-Qadi, I. L., Hassan, M. M., & Elseifi, M. A. (2005). Field and theoretical evaluation of thermal fatigue cracking in flexible pavements. Transportation Research Record: Journal of the Transportation Research Board, 1919(1), 87–95. https://doi.org/10.1177/0361198105191900110
  • ARA Inc. (2004). Guide for mechanistic empirical design of new and rehabilitated pavement structures. NCHRP Project sponsored by AASHTO and FHWA.
  • Bayat, A., Knight, M. A., & Soleymani, H. R. (2012). Field monitoring and comparison of thermal- and load-induced strains in asphalt pavement. International Journal of Pavement Engineering, 13(6), 508–514. https://doi.org/10.1080/10298436.2011.577776
  • Biswas, S., Hasheimian, L., & Bayat, A. (2016). Investigation on seasonal variation of thermal-induced strain in flexible pavements based on field and laboratory measurements. International Journal of Pavement Research and Technology, 9(5), 354–362. https://doi.org/10.1016/j.ijprt.2016.08.008
  • Ceravolo, R., Miraglia, G., Surace, C., & Fragonara, L. Z. (2016). A computational methodology for assessing the time-dependent structural performance of electric road infrastructures. Computer-Aided Civil and Infrastructure Engineering, 31(9), 701–716. https://doi.org/10.1111/mice.12199
  • Chabot, A., Chupin, O., Deloffre, L., & Duhamel, D. (2010). Viscoroute 2.0: A tool for the simulation of moving load effects on asphalt pavement. Road Materials and Pavement Design, 11(2), 227–250. https://doi.org/10.3166/rmpd.11.227-250
  • Chabot, A., & Deep, P. (2019). 2D multilayer solution for an electrified road with a built-in charging box. Road Materials and Pavement Design, 20(sup2), S590–S603. https://doi.org/10.1080/14680629.2019.1621445
  • Chabot, A., Tamagny, P., Poché, D., & Duhamel, D. (2006). Visco-elastic modelling for asphalt pavements – Software ViscoRoute. 2, 11.
  • Chailleux, E., de La Roche, C., & Piau, J.-M. (2010). Modeling of complex modulus of bituminous mixtures measured in tension/compression to estimate secant modulus in indirect tensile test. Materials and Structures, 44(3), 641–657. https://doi.org/10.1617/s11527-010-9655-z
  • Chen, F. (2016). Sustainable implementation of electrified roads: Structural and material analyses [Doctoral dissertation]. KTH Royal Institute of Technology. Retrieved from http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-195669
  • Chen, F., Balieu, R., Córdoba, E., & Kringos, N. (2017). Towards an understanding of the structural performance of future electrified roads: A finite element simulation study. International Journal of Pavement Engineering, 20(2), 204–215. https://doi.org/10.1080/10298436.2017.1279487
  • Chen, F., Coronado, C. F., Balieu, R., & Kringos, N. (2018). Structural performance of electrified roads: A computational analysis. Journal of Cleaner Production, 195, 1338–1349. https://doi.org/10.1016/j.jclepro.2018.05.273
  • Claessen, A. I. M., Edwards, J. M., Sommer, P., & Uge, P. (1977). Asphalt pavement design—The shell method. In Proceedings of 4th International Conference on Structural Design of Asphalt Pavements, 1.
  • Combescure, A., Hoffman, A., & Pasquet, P. (1982). The CASTEM finite element system. In C.A. Brebbia Finite Element Systems. pp 115-125. Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-662-07229-5_8.
  • Corté, J.-F., & Goux, M.-T. (1996). Design of pavement structures: The French technical guide. Transportation Research Record: Journal of the Transportation Research Board, 1539(1), 116–124. https://doi.org/10.1177/0361198196153900116
  • de Freitas Alves, T. (2022). Thermomechanical behaviour of bituminous layers containing rigid inserts for eRoads [Doctoral dissertation]. University of São Paulo, São Paulo: Escola Politécnica. doi:10.11606/T.3.2022.tde-19012023-092333. Retrieved from: https://www.teses.usp.br/teses/disponiveis/3/3138/tde-19012023-092333/en.php
  • Di Paola, F., Guerin, C., Lindecker, T., & Berthinier, C. (2021). Starting with CAST3M thermomechanical calculations. http://www-cast3m.cea.fr/html/formations/Starting_with_Cast3M.pdf
  • Duhamel, D., Chabot, A., Tamagny, P., & Harfouche, L. (2005). Viscoroute: Logiciel de modélisation viscoélastique des chaussées bitumineuses. In BLPC - Bulletin des Laboratoires des Ponts et Chaussées, 258-259, (pp 89–103). hal-01534799.
  • Duong, N. S. (2017). Instrumentation de chaussées: La route intelligente qui s’auto-détecte? [Doctoral dissertation]. Nantes, France: École Centrale de Nantes. Retrieved from: https://theses.hal.science/tel-02982181/
  • Ferchaud, B., & Rodrigues, A. (2014). Projet solution demontable TROISIÈME RAIL SYSTÈME APS (Rapport d’etude No. R372093; p. 8). LRCCP.
  • Franco, F. A. C. P. (2007). Método de dimensionamento mecanísticoempírico de pavimentos asfálticos – SisPav [Doctoral dissertation]. Brasil: COPPE/UFRJ, Rio de Janeiro. Retrieved from: http://www.coc.ufrj.br/pt/teses-de-doutorado/151-2007/1107-filipe-augusto-cinque-de-proenca-franco
  • Geuzaine, C., & Remacle, J.-F. (2009). Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities: THE GMSH PAPER. International Journal for Numerical Methods in Engineering, 79(11), 1309–1331. https://doi.org/10.1002/nme.2579
  • Hagart-Alexander, C. (2009). Instrumentation reference book (4th Edition). Walt Boyes.
  • Hornych, P., Gabet, T., Nguyen, M. L., Anfosso Lédée, F., & Duprat, P. (2020). Evaluation of a solution for electric supply of vehicles by the road, at laboratory and full scale. In Proceedings of the 6th APT Conference (pp. 689–698).
  • Huurman, M., Markine, V. L., & de Man, A. P. (2003). Design calculations for embedded rail in asphalt. Transportation Research Record: Journal of the Transportation Research Board, 1825(1), 28–37. https://doi.org/10.3141/1825-05
  • Ktari, R., Hammoum, F., Hornych, P., St-Laurent, D., Marsac, P., Nguyen, M. L., & Piau, J.-M. (2019). Consideration of seasonal temperature changes in the French pavement design method. In Risk Evaluation and Climate Change Adaptation of Civil Engineering Infrastructures and Buildings: Project RI‐ADAPTCLIM (pp 1–55). https://doi.org/10.1002/9781119671428.ch1
  • Kwon, Y.-D., Kwon, S.-B., Lu, X., & Kwon, H.-W. (2014). A finite element procedure with poisson iteration method adopting pattern approach technique for near-incompressible rubber problems. Advances in Mechanical Engineering, 6, 272574. https://doi.org/10.1155/2014/272574
  • LCPC-Setra. (1998). Catalogue des structures types de chaussées neuves (Hypothèses et données de calcul) [Guide]. Réseau Routier National.
  • LCPC-Setra. (2003). Construction des chaussées neuvessur le réseau routier national (Spécifications des variantes) [Guide Technique].
  • Martin, G., Barrès, C., Cassagnau, P., Sonntag, P., & Garois, N. (2008). Viscoelasticity of randomly crosslinked EPDM networks. Polymer, 49(7), 1892–1901. https://doi.org/10.1016/j.polymer.2008.02.003
  • Ministère de la Transition Écologique. (2005, August 3). Paramètres et phénomènes routiers—La température de surface. http://www.viabilite-hivernale.developpement-durable.gouv.fr/la-temperature-de-surface-a4134.html. http://www.viabilite-hivernale.developpement-durable.gouv.fr/la-temperature-de-surface-a4134.html
  • NF EN 12697-26. (2012). Bituminous mixtures—Test methods for hot mix asphalt—Part 26: Stiffness.
  • NF EN 12697-33+A1. (2007). Bituminous mixtures—Test methods for hot mix asphalt—Part 33: Specimen prepared by roller compactor.
  • NF EN 12697-35. (2017). Mélanges bitumineux—Essais—Partie 35: Malaxage de laboratoire.
  • NF EN 13108-1. (2007). Bituminous mixtures—Materials specifications—Part 1: Asphalt concrete.
  • Olard, F., Di Benedetto, H., Dony, A., & Vaniscote, J.-C. (2004). Properties of bituminous mixtures at low temperatures and relations with binder characteristics. Materials and Structures, 38(275), 121–126. https://doi.org/10.1617/14132
  • Olsson, O. (2014). Slide-in electric road system, conductive project report, phase 1. Viktoria Swedish ICT.
  • Paixão, A., Varandas, J. N., Fortunato, E., & Calçada, R. (2018). Numerical simulations to improve the use of under sleeper pads at transition zones to railway bridges. Engineering Structures, 164, 169–182. https://doi.org/10.1016/j.engstruct.2018.03.005
  • Sundelin, H., Gustavsson, M. G. H., & Tongur, S. (2016). The maturity of electric road systems. In International Conference on Electrical Systems for Aircraft,: Railway, Ship Propulsion and Road Vehicles & International Transportation Electrification Conference (ESARS-ITEC), France.
  • Suul, J. A., & Guidi, G. (2018). Technology for dynamic on-road power transfer to electric vehicles. Electric Infrastructure for Goods Transport.
  • Swarner, B. R. (2016). Material evaluation of an elastomer, epoxy and lightweight concrete rail attachment system for direct fixation light rail applications [Master's thesis]. University of Washington. Retrieved from: https://digital.lib.washington.edu/researchworks/handle/1773/37065
  • Teguedi, M. C., Toussaint, E., Blaysat, B., Moreira, S., Liandrat, S., & Grédiac, M. (2017). Towards the local expansion and contraction measurement of asphalt exposed to freeze-thaw cycles. Construction and Building Materials, 154, 438–450. https://doi.org/10.1016/j.conbuildmat.2017.07.152
  • Vu, V. T. (2017). Etude expérimentale et numérique du comportement au gel et au dégel des enrobes bitumineux partiellement satures [Doctoral dissertation]. Nantes, France: Université Bretagne Loire. Retrieved from: https://www.theses.fr/2017ECDN0049
  • Wei, Y., Wu, Y., & Duan, Z. (2018). Thermal and dynamic behaviors of wheel/rail contact system considering thermal-mechanical coupling effects. Journal of Vibroengineering, 20(6), 2414–2423. https://doi.org/10.21595/jve.2018.19606
  • Williams, M. L., Landel, R. F., & Ferry, J. D. (1955). The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. Journal of the American Chemical Society, 77(14), 3701–3707. https://doi.org/10.1021/ja01619a008
  • Xu, Q., & Solaimanian, M. (2010). Modeling temperature distribution and thermal property of asphalt concrete for laboratory testing applications. Construction and Building Materials, 24(4), 487–497. https://doi.org/10.1016/j.conbuildmat.2009.10.013

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.