115
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Geopolymerisation and micro-pore assessment of soft soil used as flexible pavement material in road construction

ORCID Icon, ORCID Icon &
Received 08 Apr 2023, Accepted 12 Dec 2023, Published online: 12 Jan 2024

References

  • AASHTO. (2008). Mechanistic empirical pavement design guide: A manual of practice. American Association of State Highway and Transportation Officials.
  • Abdila, S. R., Abdullah, M. M. A. B., Ahmad, R., Rahim, S. Z. A., Rychta, M., Wnuk, I., Nabiałek, M., Muskalski, K., Tahir, M. F. M., Syafwandi, I. M., & Gucwa, M. (2021). Evaluation on the mechanical properties of ground granulated blast slag (GGBS) and fly ash stabilized soil via geopolymer process. Materials, 14(11), 1–19. https://doi.org/10.3390/ma14112833
  • Adeyanju, E., Okeke, C. A., Akinwumi, I., & Busari, A. (2020). Subgrade stabilization using rice husk ash-based geopolymer (GRHA) and cement kiln dust (CKD). Case Studies in Construction Materials, 13, 1–9. https://doi.org/10.1016/j.cscm.2020.e00388
  • Al-Khalaf, M. N., & Yousif, H. A. (1984). Use of rice husk ash in concrete. International Journal of Cement Composites and Lightweight Concrete, 6(4), 241–248. https://doi.org/10.1016/0262-5075(84)90019-8
  • Amulya, S., Ravi Shankar, A. U., & Praveen, M. (2020). Stabilization of lithomargic clay using alkali activated fly ash and ground granulated blast furnace slag. International Journal of Pavement Engineering, 21(9), 1114–1121. https://doi.org/10.1080/10298436.2018.1521520
  • ASTM. (1992). Annual book of ASTM standards (Vol. 04.08). American Society for Testing and Materials.
  • Baloochi, H., Aponte, D., & Barra, M. (2020). Soil stabilization using wastepaper fly ash: Precautions for its correct use. Applied Sciences, 10(23), 1–15. https://doi.org/10.3390/app10238750
  • Behiry, A. E. A. E.-M. (2014). Utilization of a new by-product material for soft subgrade soil stabilization. OALib, 01(03), 1–22. https://doi.org/10.4236/oalib.1100711
  • British Standard Institute. (1990). Method of testing soils in civil engineering purposes: Vol. BS 1377, Part 7.
  • British standard institution. (1990). Method of testing soils for civil engineering purposes: Vol. BS 1377, Part 4 (BS 1377).
  • Chethan, B. A., & Ravi Shankar, A. U. (2021). Strength and durability characteristics of cement and class F fly ash-treated black cotton soil. Indian Geotechnical Journal, 51(5), 1121–1133. https://doi.org/10.1007/s40098-020-00488-2
  • Criado, M., Palomo, A., & Fernández-Jiménez, A. (2005). Alkali activation of fly ashes. Part 1: Effect of curing conditions on the carbonation of the reaction products. Fuel, 84(16), 2048–2054. https://doi.org/10.1016/j.fuel.2005.03.030
  • Dhakar, S., & Jain, S. K. (2020). Stabilization of soil: A review.  International journal of science and research, 5(6), 545–549.
  • Disu, A. A., & Kolay, P. K. (2021). A critical appraisal of soil stabilization using geopolymers: The past, present and future. International Journal of Geosynthetics and Ground Engineering, 7(2), 1–16. https://doi.org/10.1007/s40891-021-00267-w
  • Estabragh, A. R., Rafatjo, H., & Javadi, A. A. (2014). Treatment of an expansive soil by mechanical and chemical techniques. Geosynthetics International, 21(3), 233–243. https://doi.org/10.1680/gein.14.00011
  • Etim, R. K., Attah, I. C., & Yohanna, P. (2020). Experimental study on potential of oyster shell ash in structural strength improvement of lateritic soil for road construction. International Journal of Pavement Research and Technology, 13(4), 341–351. https://doi.org/10.1007/s42947-020-0290-y
  • Gobinath, R., Ganapathy, G. P., Akinwumi, I. I., Kovendiran, S., Hema, S., & Thangaraj, M. (2016). Plasticity,: strenth, permeability and compressibility characterisitcs of black cotton soil stabilized with precipitated silica. Journal of Central South University, 23(10), 2688–2694. https://doi.org/10.1007/s11771-016-3330-7
  • Guo, X., & Wu, Y. (2017). Characterizing molecular structure of water adsorbed by cellulose nanofiber film using in situ micro-FTIR spectroscopy. Journal of Wood Chemistry and Technology, 37(5), 383–392. https://doi.org/10.1080/02773813.2017.1306078
  • Hamzah, H. N., al Bakri Abdullah, M. M., Yong, H. C., Zainol, M. R. R. A., & Hussin, K. (2015). Review of soil stabilization techniques: Geopolymerization method one of the new techniques. Key Engineering Materials, 660, 298–304. https://doi.org/10.4028/www.scientific.net/KEM.660.298
  • Hossain, S. S., Roy, P. K., & Bae, C.-J. (2021). Utilization of waste rice husk ash for sustainable geopolymer: A review. Construction and Building Materials, 310, 1–21. https://doi.org/10.1016/j.conbuildmat.2021.125218.
  • Ikeagwuani, C. C., & Nwonu, D. C. (2019). Emerging trends in expansive soil stabilisation: A review. Journal of Rock Mechanics and Geotechnical Engineering, 11(2), 423–440. Chinese Academy of Sciences. https://doi.org/10.1016/j.jrmge.2018.08.013
  • Ikeagwuani, C. C., & Nwonu, D. C. (2021). Influence of dilatancy behavior on the numerical modeling and prediction of slope stability of stabilized expansive soil slope. Arabian Journal for Science and Engineering, 46(11), 11387–11413. https://doi.org/10.1007/s13369-021-05764-8
  • Khan, A. M., & Ravi, S. (2013). Image segmentation methods: A comparative study. International Journal of Soft Computing and Engineering (IJSCE), 4(3), 1–9. https://doi.org/10.5121/ijsc.2013.4301
  • Kharade, A. S. (2014). Waste product bagasse ash from sugar industry can be used as stabilizing material for expansive soils. International Research Journal of Engineering and Technology, 3(3), 506–512.
  • Kishor, R., Singh, V. P., & Srivastava, R. K. (2022). Mitigation of expansive soil by liquid alkaline activator using rice husk ash, sugarcane bagasse ash for highway subgrade. International Journal of Pavement Research and Technology, 15(4), 915–930. https://doi.org/10.1007/s42947-021-00062-w
  • Lakhanpal, A., & Chopra, A. (2018). A brief review on various methods and materials used for stabilization of soil. International Research Journal of Engineering and Technology, 5(3), 682–684.
  • Maheepala, M. M. A. L. N., Nasvi, M. C. M., Robert, D. J., Gunasekara, C., & Kurukulasuriya, L. C. (2022). A comprehensive review on geotechnical properties of alkali activated binder treated expansive soil. Journal of Cleaner Production, 363, 1–21. https://doi.org/10.1016/j.jclepro.2022.132488.
  • Marjanovic, N., Komljenovic, M., Baacarević, Z., Nikolic, V., & Petrovic, R. (2015). Physical–mechanical and microstructural properties of alkali activated fly ash–blast furnace slag blends. Ceramics International, 41(1), 1421–1435. https://doi.org/10.1016/j.ceramint.2014.09.075
  • McCaffrey, R. (2002). Climate change and the cement industry. In R. McCaffrey (Ed.), Global cement and lime magazine. Environmental special issue (pp. 15–19).
  • Mishra, S., Sachdeva, S. N., & Manocha, R. (2019). Subgrade soil stabilization using stone dust and coarse aggregate: A cost-effective approach. International Journal of Geosynthetics and Ground Engineering, 5(19), 1–11. https://doi.org/10.1007/s40891-019-0171-0
  • Murmu, A. L., Dhole, N., & Patel, A. (2020). Stabilisation of black cotton soil for subgrade application using fly ash geopolymer. Road Materials and Pavement Design, 21(3), 867–885. https://doi.org/10.1080/14680629.2018.1530131
  • Murmu, A. L., Jain, A., & Patel, A. (2019). Mechanical properties of alkali activated fly ash geopolymer stabilized expansive clay. KSCE Journal of Civil Engineering, 23(9), 3875–3888. https://doi.org/10.1007/s12205-019-2251-z
  • Murmu, A. L., & Patel, A. (2020). Studies on the properties of fly ash–rice husk ash-based geopolymer for use in black cotton soils. International Journal of Geosynthetics and Ground Engineering, 6(38), 1–14. https://doi.org/10.1007/s40891-020-00224-z
  • Nabil, M., Mustapha, A., & Rios, S. (2020). Impact of wetting-drying cycles on the mechanical properties of lime-stabilized soils. International Journal of Pavement Research and Technology, 13(1), 83–92. https://doi.org/10.1007/s42947-019-0088-y
  • Nenadović, S. S., Kljajević, L. M., Nešić, M. A., Petković, M. Ž., Trivuna, K. V., & Pavlović, V. B. (2017). Structure analysis of geopolymers synthesized from clay originated from Serbia. Environmental Earth Sciences, 76(2), 1–10. https://doi.org/10.1007/s12665-016-6360-4
  • Nigerian general specification for roads and bridge works, vol 2. Federal Ministry of Works and Housing, A. (1997). Nigerian General Specification.
  • Nwonu, D. C., & Ikeagwuani, C. C. (2019). Evaluating the effect of agro-based admixture on lime-treated expansive soil for subgrade material. International Journal of Pavement Engineering, (12), 1541–1555. https://doi.org/10.1080/10298436.2019.1703979
  • Nwonu, D. C., & Ikeagwuani, C. C. (2021). Microdust effect on the physical condition and microstructure of tropical black clay. International Journal of Pavement Research and Technology, 14(1), 73–84. https://doi.org/10.1007/s42947-020-0004-5
  • Obeta, I. N., Ikeagwuani, C. C., Attama, C. M., & Okafor, J. (2019). Stability and durability of sawdust ash-lime stabilised black cotton soil. Nigerian Journal of Technology, 38(1), 75–80. https://doi.org/10.4314/njt.v38i1.10
  • Phadke, M. S. (1989). Quality engineering using robust design. Prentice-Hall.
  • Pourakbar, S., Asadi, A., Huat, B. B. K., Cristelo, N., & Fasihnikoutalab, M. H. (2017). Application of alkai-activated agro-waste reinforced with wallastonite fibers in soil stabilization. Journal of Materials in Civil Engineering, 29(2), 1–11. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001735
  • Rabbani, A., & Salehi, S. (2017). Dynamic modeling of the formation damage and mud cake deposition using filtration theories coupled with SEM image processing. Journal of Natural Gas Science and Engineering, 42, 157–168. https://doi.org/10.1016/j.jngse.2017.02.047
  • Rajeshwar, D., Priyanka, & Swapna, D. (2012). Image segmentation techniques. International Journal of Electronics & Communication Technology, 3(1), 1–5.
  • Rattanasak, U., & Chindaprasir, P. (2009). Influence of NaOH solution on the synthesis of fy ash geopolymer. Minerals Engineering, 22(12), 1073–1078. https://doi.org/10.1016/j.mineng.2009.03.022
  • Samantasinghar, S., & Singh, S. P. (2019). Fresh and hardened properties of fly ash– slag blended geopolymer paste and mortar. International Journal of Concrete Structures and Materials, 13(47), 1–12. https://doi.org/10.1186/s40069-019-0360-1
  • Sharma, L. K., Sirdesai, N. N., Sharma, K. M., & Singh, T. N. (2018). Experimental study to examine the independent roles of lime and cement on the stabilization of a mountain soil: A comparative study. Applied Clay Science, 152, 183–195. https://doi.org/10.1016/j.clay.2017.11.012
  • Siddika, A., Mamun, M. A. A., & Ali, M. H. (2018). Study on concrete with rice husk ash. Innovative Infrastructure Solutions, 3(18), 1–9. https://doi.org/10.1007/s41062-018-0127-6
  • Song, S.-B., Liu, J.-F., Yang, D.-S., Ni, H.-Y., Huang, B.-X., Zhang, K., & Mao, X.-B. (2019). Pore structure characterization and permeability prediction of coal samples based on SEM images. Journal of Natural Gas Science and Engineering, 67, 160–171. https://doi.org/10.1016/j.jngse.2019.05.003
  • Sukmak, P., Sukmak, G., Horpibulsuk, S., Setkit, M., Kassawat, S., & Arulrajah, A. (2019). Palm oil fuel ash–soft soil geopolymer for subgrade applications: Strength and microstructural evaluation. Road Materials and Pavement Design, 20(1), 110–131. https://doi.org/10.1080/14680629.2017.1375967
  • Syed, I. M., & Scullion, T. (2001). Performance evaluation of recycled and stabilized bases in Texas. Transportation Research Record: Journal of the Transportation Research Board, 1757(1), 14–21. https://doi.org/10.3141/1757-02
  • Vadapalli, P. (2021). Image Segmentation Techniques [Step by Step Implementation]. UpGrad. https://www.upgrad.com/blog/image-segmentation-techniques/.
  • Yao, X., Zhang, Z., Zhu, H., & Chen, Y. (2009). Geopolymerization process of alkali-metakaolinite characterized by isothermal calorimetry. Thermochimica Acta, 493(1–2), 49–54. https://doi.org/10.1016/j.tca.2009.04.002
  • Zhang, M., Guo, H., El-Korchi, T., Zhang, G., & Tao, M. (2013). Experimental feasibility study of geopolymer as the next-generation soil stabilizer. Construction and Building Materials, 47, 1468–1478. https://doi.org/10.1016/j.conbuildmat.2013.06.017
  • Zhang, Y., Korkiala-Tanttu, L. K., & Boren, M. (2019). Assessment for sustainable use of quarry fines as pavement construction materials: Part II-stabilization and characterization of quarry fine materials. Materials, 12(2450), 1–18. http://doi.org/10.3390/ma12152450
  • Zhang, Z., Wang, H., & Provis, J. L. (2012). Quantitative study of the reactivity of fly ash in geopolymerization by FTIR. Journal of Sustainable Cement-Based Materials, 1(4), 154–166.
  • Zheng, L., Wang, W., & Shi, Y. (2010). The effects of alkaline dosage and Si/Al ratio on the immobilization of heavy metals in municipal solid waste incineration fly ash-based geopolymer. Chemosphere, 79(6), 665–671. https://doi.org/10.1016/j.chemosphere.2010.02.018

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.