500
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Use of Hansen Solubility Parameters (HSP) in the selection of highly effective rejuvenators for aged bitumen

ORCID Icon, , , ORCID Icon, , ORCID Icon & show all
Received 07 Dec 2023, Accepted 14 May 2024, Published online: 30 May 2024

References

  • Baek, C., Underwood, B. S., & Kim, Y. R. (2012). Effects of oxidative aging on asphalt mixture properties. Transportation Research Record: Journal of the Transportation Research Board, 2296(1), 77–85. Retrieved January 28, 2022. https://doi.org/10.3141/2296-08
  • Bahia, H. U., Hanson, D. I., Zeng, M., Zhai, H., Khatri, M. A., & Anderson, R. M. (2001). Characterization of modified asphalt binders in superpave mix design. Washington, D.C., NCHRP REPORT 459.
  • Bsi. (2014a). Bitumen and bituminous binders. Accelerated long-term aging conditioning by a pressure aging vessel (pav). BSI London, UK.
  • Bsi. (2014b). Bitumen and bituminous binders. Determination of the resistance to hardening under influence of heat and air. Rtfot method. BSI London, UK.
  • Cavalli, M. C., Zaumanis, M., Mazza, E., Partl, M. N., & Poulikakos, L. D. (2018). Effect of ageing on the mechanical and chemical properties of binder from rap treated with bio-based rejuvenators. Composites Part B: Engineering, 141, 174–181. https://doi.org/10.1016/j.compositesb.2017.12.060
  • Christensen, D. (1998). Analysis of creep data from indirect tension test on asphalt concrete. Journal of the Association of Asphalt Paving Technologists, 67, 458–492.
  • Corbett, L. W. (1969). Composition of asphalt based on generic fractionation, using solvent deasphaltening, elution-adsorption chromatography, and densimetric characterization. Analytical Chemistry, 41(4), 576–579. https://doi.org/10.1021/ac60273a004
  • Davis, T. C., & Petersen, J. C. (1966). Adaptation of inverse gas-liquid chromatography to asphalt oxidation studies. Analytical Chemistry, 38(13), 1938–1940. https://doi.org/10.1021/ac50155a070
  • Devulapalli, L., Kothandaraman, S., & Sarang, G. (2019). A review on the mechanisms involved in reclaimed asphalt pavement. International Journal of Pavement Research and Technology, 12(2), 185–196. https://doi.org/10.1007/s42947-019-0024-1
  • Dokandari, P. A., Topal, A., & Ozdemir, D. K. (2021). Rheological and microstructural investigation of the effects of rejuvenators on reclaimed asphalt pavement bitumen by DSR and AFM. International Journal of Civil Engineering, 19(7), 749–758. https://doi.org/10.1007/s40999-021-00605-z
  • Eberhardsteiner, L., Füssl, J., Hofko, B., Handle, F., Hospodka, M., Blab, R., & Grothe, H. (2015). Influence of asphaltene content on mechanical bitumen behavior: Experimental investigation and micromechanical modeling. Materials and Structures, 48(10), 3099–3112. https://doi.org/10.1617/s11527-014-0383-7
  • Gallu, R., Méchin, F., Dalmas, F., Gérard, J.-F., Perrin, R., & Loup, F. (2020). On the use of solubility parameters to investigate phase separation-morphology-mechanical behavior relationships of TPU. Polymer, 207, 122882. https://doi.org/10.1016/j.polymer.2020.122882
  • Gallu, R., Méchin, F., Dalmas, F., Gérard, J.-F., Perrin, R., & Loup, F. (2021). Investigating compatibility between TPU and bitumen SARA fractions by means of Hansen Solubility Parameters and interfacial tension measurements. Construction and Building Materials, 289, 123151. https://doi.org/10.1016/j.conbuildmat.2021.123151
  • Gallu, R., Méchin, F., Gérard, J.-F., & Dalmas, F. (2022). Influence of the chain extender of a segmented polyurethane on the properties of polyurethane-modified asphalt blends. Construction and Building Materials, 328, 1–13. 127061. https://doi.org/10.1016/j.conbuildmat.2022.127061
  • Guo, M., Liang, M. C., Sreeram, A., Bhasin, A., & Luo, D. S. (2021). Characterisation of rejuvenation of various modified asphalt binders based on simplified chromatographic techniques. International Journal of Pavement Engineering, 23(12), 4333–4343. https://doi.org/10.1080/10298436.2021.1943743
  • Hansen, C. M. (1969). The universality of the solubility parameter. Industrial & Engineering Chemistry Product Research and Development, 8, 2–11.
  • Hansen, C. M. (2007). Hansen solubility parameters: A user's handbook. CRC press.
  • Hildebrand, J., & Scott, R. (1950). Solutions of nonelectrolytes. Annual Review of Physical Chemistry, 1(1), 75–92. https://doi.org/10.1146/annurev.pc.01.100150.000451
  • Hu, Y., Ryan, J., Sreeram, A., Allanson, M., Pasandín, A. R., Zhou, L., Singh, B., Wang, H., & Airey, G. D. (2024). Optimising the dosage of bio-rejuvenators in asphalt recycling: A rejuvenation index based approach. Construction and Building Materials, 433, 136761. https://doi.org/10.1016/j.conbuildmat.2024.136761
  • Hu, Y., Si, W., Kang, X., Xue, Y., Wang, H., Parry, T., & Airey, G. D. (2022). State of the art: Multiscale evaluation of bitumen ageing behaviour. Fuel, 326, 125045. https://doi.org/10.1016/j.fuel.2022.125045
  • Hu, Y., Xia, W., Xue, Y., Zhao, P., Wen, X., Si, W., Wang, H., Zhou, L., & Airey, G. D. (2023). Evaluating the ageing degrees of bitumen by rheological and chemical indices. Road Materials and Pavement Design, 24(sup1), 19–36. https://doi.org/10.1080/14680629.2023.2180289
  • Kabir, S. F., & Fini, E. H. (2021). Investigating aging and rejuvenation mechanism of biomodified rubberized bitumen. Journal of Materials in Civil Engineering, 33(7), 1–9. 04021142. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003770
  • Lesueur, D. (2009). The colloidal structure of bitumen: Consequences on the rheology and on the mechanisms of bitumen modification. Advances in Colloid and Interface Science, 145(1), 42–82. https://doi.org/10.1016/j.cis.2008.08.011
  • Lin, P., Liu, X. Y., Apostolidis, P., Erkens, S., Ren, S. S., Xu, S., Scarpas, T., & Huang, W. D. (2021). On the rejuvenator dosage optimization for aged SBS modified bitumen. Construction and Building Materials, 271.
  • Loeber, L., Muller, G., Morel, J., & Sutton, O. (1998). Bitumen in colloid science: A chemical, structural and rheological approach. Fuel, 77(13), 1443–1450. https://doi.org/10.1016/S0016-2361(98)00054-4
  • Lu, X., & Isacsson, U. (2002). Effect of ageing on bitumen chemistry and rheology. Construction and Building Materials, 16(1), 15–22. https://doi.org/10.1016/S0950-0618(01)00033-2
  • Lu, X., Kalman, B., & Redelius, P. (2008). A new test method for determination of wax content in crude oils, residues and bitumens. Fuel, 87(8), 1543–1551. https://doi.org/10.1016/j.fuel.2007.08.019
  • Ma, Y. T., Hu, W., Polaczyk, P. A., Han, B. Y., Xiao, R., Zhang, M. M., & Huang, B. S. (2020). Rheological and aging characteristics of the recycled asphalt binders with different rejuvenator incorporation methods. Journal of Cleaner Production, 262, 121249. https://doi.org/10.1016/j.jclepro.2020.121249
  • Makowska, M., Aromaa, K., & Pellinen, T. (2017). The rheological transformation of bitumen during the recycling of repetitively aged asphalt pavement. Road Materials and Pavement Design, 18(sup2), 50–65. https://doi.org/10.1080/14680629.2017.1304266
  • Mamun, A. A., & Wahhab, H. I. A. (2020). Comparative laboratory evaluation of waste cooking oil rejuvenated asphalt concrete mixtures for high contents of reclaimed asphalt pavement. International Journal of Pavement Engineering, 21(11), 1297–1308. https://doi.org/10.1080/10298436.2018.1539486
  • Margaritis, A., Pipintakos, G., Jacobs, G., Hernando, D., Bruynen, M., Bruurs, J., & Van Den Bergh, W. (2021). Evaluating the role of recycling rate and rejuvenator on the chemo-rheological properties of reclaimed polymer-modified binders. Road Materials and Pavement Design, 22(sup1), S83–S98. https://doi.org/10.1080/14680629.2021.1905700
  • Mirwald, J., Werkovits, S., Camargo, I., Maschauer, D., Hofko, B., & Grothe, H. (2020a). Investigating bitumen long-term-ageing in the laboratory by spectroscopic analysis of the SARA fractions. Construction and Building Materials, 258, 119577. https://doi.org/10.1016/j.conbuildmat.2020.119577
  • Mirwald, J., Werkovits, S., Camargo, I., Maschauer, D., Hofko, B., & Grothe, H. (2020b). Understanding bitumen ageing by investigation of its polarity fractions. Construction and Building Materials, 250, 118809. https://doi.org/10.1016/j.conbuildmat.2020.118809
  • Nsengiyumva, G., Haghshenas, H. F., Kim, Y. R., & Kommidi, S. R. (2020). Mechanical-chemical characterization of the effects of type, dosage, and treatment methods of rejuvenators in aged bituminous materials. Transportation Research Record: Journal of the Transportation Research Board, 2674(3), 126–138. https://doi.org/10.1177/0361198120909110
  • Oldham, D., Hung, A., Parast, M. M., & Fini, E. H. (2018). Investigating bitumen rejuvenation mechanisms using a coupled rheometry-morphology characterization approach. Construction and Building Materials, 159, 37–45. https://doi.org/10.1016/j.conbuildmat.2017.10.113
  • Oldham, D. J., Rajib, A. I., Onochie, A., & Fini, E. H. (2019). Durability of bio-modified recycled asphalt shingles exposed to oxidation aging and extended sub-zero conditioning. Construction and Building Materials, 208, 543–553. https://doi.org/10.1016/j.conbuildmat.2019.03.017
  • Omairey, E., Hughes, D., Hu, Y., & Airey, G. D. (2024). Feasibility evaluation of bio-waste derived, plastic-waste modified binder rejuvenators. In Y. Zhang, G. D. Airey, M. Rahman, & H. Wang (Eds.), Advances in functional pavements (pp. 58–61). CRC Press.
  • Petersen, J. C. (2009). A review of the fundamentals of asphalt oxidation: Chemical, physicochemical, physical property, and durability relationships. Transportation Research E Circular.
  • Petersen, J. C., & Glaser, R. (2011). Asphalt oxidation mechanisms and the role of oxidation products on age hardening revisited. Road Materials and Pavement Design, 12(4), 795–819. https://doi.org/10.1080/14680629.2011.9713895
  • Petersen, J. C., & Harnsberger, P. M. (1998). Asphalt aging: Dual oxidation mechanism and its interrelationships with asphalt composition and oxidative age hardening. Transportation Research Record: Journal of the Transportation Research Board, 1638(1), 47–55. Retrieved January 28, 2022. https://doi.org/10.3141/1638-06
  • Petersen, J. C., Robertson, R. E., Branthaver, P. M., Duvall, J. J., Kim, S. S., Anderson, D. A., Christiansen, D. W., & Bahia, H. U. (1994). Binder characterization and evaluation. National Research Council.
  • Poulikakos, L. D., Cannone Falchetto, A., Wang, D., Porot, L., & Hofko, B. (2019). Impact of asphalt aging temperature on chemo-mechanics. RSC Advances, 9(21), 11602–11613. https://doi.org/10.1039/C9RA00645A
  • Rajib, A. I., Samieadel, A., Zalghout, A., Kaloush, K. E., Sharma, B. K., & Fini, E. H. (2020). Do all rejuvenators improve asphalt performance? Road Materials and Pavement Design, 23(2), 358–376. https://doi.org/10.1080/14680629.2020.1826348
  • Redelius, P., & Soenen, H. (2011). Correlation between bitumen polarity and rheology. Road Materials and Pavement Design, 6(3), 385–405. https://doi.org/10.1080/14680629.2005.9690013
  • Redelius, P., & Soenen, H. (2015). Relation between bitumen chemistry and performance. Fuel, 140, 34–43. https://doi.org/10.1016/j.fuel.2014.09.044
  • Redelius, P. G. (2000). Solubility parameters and bitumen. Fuel, 79(1), 27–35. https://doi.org/10.1016/S0016-2361(99)00103-9
  • Schwettmann, K., Nytus, N., Weigel, S., Radenberg, M., & Stephan, D. (2023). Effects of rejuvenators on bitumen ageing during simulated cyclic reuse: A review. Resources, Conservation and Recycling, 190, 106776. https://doi.org/10.1016/j.resconrec.2022.106776
  • Shi, K., Ma, F., Fu, Z., Song, R., Yuan, D., & Ogbon, A. W.. (2024). Enhancing aged SBS-modified bitumen performance with unaged bitumen additives. Construction and Building Materials, 412, 134768. http://dx.doi.org/10.1016/j.conbuildmat.2023.134768
  • Sotoodeh-Nia, Z., Manke, N., Williams, R. C., Cochran, E. W., Porot, L., Chailleux, E., Lo Presti, D., Carrion, A. J. D., & Blanc, J. (2021). Effect of two novel bio-based rejuvenators on the performance of 50% rap mixes – A statistical study on the complex modulus of asphalt binders and asphalt mixtures. Road Materials and Pavement Design, 22(5), 1060–1077. https://doi.org/10.1080/14680629.2019.1661276
  • Sreeram, A., Filonzi, A., Komaragiri, S., Lakshmi Roja, K., Masad, E., & Bhasin, A. (2022). Assessing impact of chemical compatibility of additives used in asphalt binders: A case study using plastics. Construction and Building Materials, 359, 129349. https://doi.org/10.1016/j.conbuildmat.2022.129349
  • Sreeram, A., Leng, Z., Hajj, R., & Bhasin, A. (2019). Characterization of compatibility between aged and unaged binders in bituminous mixtures through an extended HSP model of solubility. Fuel, 254, 115578. https://doi.org/10.1016/j.fuel.2019.05.161
  • Sreeram, A., Leng, Z., Hajj, R., Ferreira, W. L. G., Tan, Z., & Bhasin, A. (2020). Fundamental investigation of the interaction mechanism between new and aged binders in binder blends. International Journal of Pavement Engineering, 23(5), 1317–1327. https://doi.org/10.1080/10298436.2020.1799208
  • Wu, W., Cavalli, M. C., Jiang, W., & Kringos, N.. (2024a). Differing perspectives on the use of high-content SBS polymer-modified bitumen. Construction and Building Materials, 411, 134433. http://doi.org/10.1016/j.conbuildmat.2023.134433
  • Wu, W., Jiang, W., Xiao, J., Yuan, D., Wang, T., & Ling, X.. (2024b). Investigation of LAS-based fatigue evaluation methods for high-viscosity modified asphalt binders with high-content polymers. Construction and Building Materials, 422, 135810. http://doi.org/10.1016/j.conbuildmat.2024.135810
  • Xu, H., Zou, Y., Airey, G., Wang, H., Zhang, H., Wu, S., & Chen, A. (2024). Wetting of bio-rejuvenator nanodroplets on bitumen: A molecular dynamics investigation. Journal of Cleaner Production, 141140. https://doi.org/10.1016/j.jclepro.2024.141140
  • Yu, X. K., Zaumanis, M., Dos Santos, S., & Poulikakos, L. D. (2014). Rheological, microscopic, and chemical characterization of the rejuvenating effect on asphalt binders. Fuel, 135, 162–171. Available from: <Go to ISI>://WOS:000340945400021. https://doi.org/10.1016/j.fuel.2014.06.038
  • Yuan, H., Nili, A., Chen, J., Ding, H., Liu, H., & Qiu, Y. (2023). Solubility and structural parameters of asphaltene subfractions separated from bitumen via an improved method. Fuel, 344, 128113. https://doi.org/10.1016/j.fuel.2023.128113
  • Zahoor, M., Nizamuddin, S., Madapusi, S., & Giustozzi, F. (2021). Sustainable asphalt rejuvenation using waste cooking oil: A comprehensive review. Journal of Cleaner Production, 278, 123304. https://doi.org/10.1016/j.jclepro.2020.123304
  • Zhang, R., Sias, J. E., & Dave, E. V. (2021a). Comparison and correlation of asphalt binder and mixture cracking parameters incorporating the aging effect. Construction and Building Materials, 301, 124075. https://doi.org/10.1016/j.conbuildmat.2021.124075
  • Zhang, X. R., Zhou, X. X., Chen, L. L., Lu, F., & Zhang, F. (2021b). Effects of poly-sulfide regenerant on the rejuvenated performance of SBS modified asphalt-binder. Molecular Simulation, 47(17), 1423–1432. doi:10.1080/08927022.2021.1977296