0
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Strength and durability characteristics of geopolymer treated pond ash as pavement material

&
Received 07 Mar 2024, Accepted 09 Jul 2024, Published online: 19 Jul 2024

References

  • Abdullah, H. H., Shahin, M. A., & Walske, M. L. (2019). Geo-mechanical behavior of clay soils stabilized at ambient temperature with fly-ash geopolymer-incorporated granulated slag. Soils and Foundations, 59(6), 1906–1920. https://doi.org/10.1016/j.sandf.2019.08.005
  • Abdullah, H. H., Shahin, M. A., Walske, M. L., & Karrech, A. (2021). Cyclic behaviour of clay stabilised with fly-ash based geopolymer incorporating ground granulated slag. Transportation Geotechnics, 26, 100430. https://doi.org/10.1016/j.trgeo.2020.100430
  • Alam, S., Das, S. K., & Rao, B. H. (2019). Strength and durability characteristic of alkali activated GGBS stabilized red mud as geo-material. Construction and Building Materials, 211, 932–942. https://doi.org/10.1016/j.conbuildmat.2019.03.261
  • Ali, H. A., Sun, K., Xuan, D., Lu, J.-X., Cyr, M., & Poon, C. S. (2023). Recycling of high-volume waste glass powder in alkali-activated materials: An efflorescence mitigation strategy. Journal of Building Engineering, 65, 105756. https://doi.org/10.1016/j.jobe.2022.105756
  • Amadi, A. A. (2014). Enhancing durability of quarry fines modified black cotton soil subgrade with cement kiln dust stabilization. Transportation Geotechnics, 1(1), 55–61. https://doi.org/10.1016/j.trgeo.2014.02.002
  • ASTM C618-03. (2003). Standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete. ASTM International, United States, 1–3. www.astm.org
  • ASTM D 4644-04. (2004). Standard test method for slake durability of shales and similar weak rocks. ASTM International, Reapproved, 04, 1–4.
  • ASTM D 6572-12. (2000). Standard test methods for determining dispersive characteristics of clayey soils by the crumb test. ASTM International, 11, 3–6.
  • Atkinson, J. H., Charles, J. A., & Mhach, H. K. (1990). Examination of erosion resistance of clays in embankment dams. Quarterly Journal of Engineering Geology, 23(2), 103–108. https://doi.org/10.1144/GSL.QJEG.1990.023.02.01
  • Ávila, Fernando, Puertas, Esther, & Gallego, Rafael. (2022). Mechanical characterization of lime-stabilized rammed earth: Lime content and strength development. Construction and Building Materials, 350, 128871. http://dx.doi.org/10.1016/j.conbuildmat.2022.128871
  • Awoyera, P., & Adesina, A. (2019). A critical review on application of alkali activated slag as a sustainable composite binder. Case Studies in Construction Materials, 11, e00268. https://doi.org/10.1016/j.cscm.2019.e00268
  • Aygörmez, Y., Canpolat, O., Al-mashhadani, M. M., & Uysal, M. (2020). Elevated temperature, freezing-thawing and wetting-drying effects on polypropylene fiber reinforced metakaolin based geopolymer composites. Construction and Building Materials, 235, 117502. https://doi.org/10.1016/j.conbuildmat.2019.117502
  • Azar, P., Samson, G., Patapy, C., Cussigh, F., Frouin, L., Idir, R., & Cyr, M. (2024). Durability of sodium carbonate alkali-activated slag concrete assessed by a performance-based approach. Construction and Building Materials, 423, 135873. https://doi.org/10.1016/j.conbuildmat.2024.135873
  • Bakare, M. D., Pai, R. R., Patel, S., & Shahu, J. T. (2019). Environmental sustainability by bulk utilization of fly ash and GBFS as road subbase materials. Journal of Hazardous, Toxic, and Radioactive Waste, 23(4), 1–10. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000450
  • Camargo, F. F., Edil, T. B., & Benson, C. H. (2013). Strength and stiffness of recycled materials stabilised with fly ash: A laboratory study. Road Materials and Pavement Design, 14(3), 504–517. https://doi.org/10.1080/14680629.2013.779299
  • Çelik, D. N., & Durmuş, G. (2022). The development of ultralightweight expanded perlite-based thermal insulation panel using alkali activator solution. Frontiers of Structural and Civil Engineering, 16(11), 1486–1499. https://doi.org/10.1007/s11709-022-0881-6
  • Central Electricity Authority. (2022). Report on fly ash generation at coal/lignite based thermal power stations and its utilization in the country for the year 2021–22. Ministry of Power. Government of India.
  • Chand, S. K., & Subbarao, C. (2007). Strength and slake durability of lime stabilized pond ash. Journal of Materials in Civil Engineering, 19(7), 601–608. https://doi.org/10.1061/(ASCE)0899-1561(2007)19:7(601)
  • Chen, Z., Li, J.-S. S., Zhan, B.-J. J., Sharma, U., & Poon, C. S. (2018). Compressive strength and microstructural properties of dry-mixed geopolymer pastes synthesized from GGBS and sewage sludge ash. Construction and Building Materials, 182, 597–607. https://doi.org/10.1016/j.conbuildmat.2018.06.159
  • Çiçek, T., & Çinçin, Y. (2015). Use of fly ash in production of light-weight building bricks. Construction and Building Materials, 94, 521–527. https://doi.org/10.1016/j.conbuildmat.2015.07.029
  • Davidovits, J. (1982). Mineral polymers and methods of making them, United States Patent (US4349386).
  • Duxson, P., Fernández-Jiménez, A., Provis, J. L., Lukey, G. C., Palomo, A., & Van Deventer, J. S. J. (2007). Geopolymer technology: The current state of the art. Journal of Materials Science, 42(9), 2917–2933. https://doi.org/10.1007/s10853-006-0637-z
  • Firoozi, A. A. A., Guney Olgun, C., Firoozi, A. A. A., Baghini, M. S., & Chen, F. H. (2017). Fundamentals of soil stabilization. International Journal of Geo-Engineering, 8(1), 463. https://doi.org/10.1186/s40703-017-0064-9
  • Ghosh, A. (2010). Compaction characteristics and bearing ratio of pond ash stabilized with lime and phosphogypsum. Journal of Materials in Civil Engineering, 22(4), 343–351. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000028
  • Hadi Sahlabadi, S., Bayat, M., Mousivand, M., & Saadat, M. (2021). Freeze–thaw durability of cement-stabilized soil reinforced with polypropylene/basalt fibers. Journal of Materials in Civil Engineering, 33(9), 04021232. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003905
  • Hoang, K., Justnes, H., & Geiker, M. (2016). Early age strength increase of fly ash blended cement by a ternary hardening accelerating admixture. Cement and Concrete Research, 81, 59–69. https://doi.org/10.1016/j.cemconres.2015.11.004
  • IRC: 37. (2018). Guidelines for the design of flexible pavements. Indian Roads Congress, New Delhi, India.
  • IRC: 58. (2015). Guidelines for the design of plain jointed rigid pavements for highways. Indian Road Congress, New Delhi, India, June.
  • IS: 4332 (Part 3). (1967). Methods of test for stabilized soils, Part 3: Test for determination of moisture content-dry density relation for stablized soil mixtures. Bureau of Indian Standard, New Delhi, India.
  • IS: 4332 (Part 4). (1968). Methods of test for stabilized soils, Part 4: Wetting and drying, and freezing and thawing tests for compacted soil-cement mixtures. Bureau of Indian Standards, New Delhi, India.
  • IS: 4332 (Part 5). (1970). Methods of test for stabilizd soils, Part 5: Determination of unconfined compressive strength of stablized soils. Bureau of Indian Standards, New Delhi, India.
  • Jose, A., Krishnan, J. M., & Robinson, R. G. (2022). Resilient and permanent deformation response of cement-stabilized pond Ash. Journal of Materials in Civil Engineering, 34(1), 1–14. https://doi.org/10.1061/(ASCE)MT.1943-5533.0004044
  • Jose, A., Nivitha, M. R., Krishnan, J. M., & Robinson, R. G. (2020). Characterization of cement stabilized pond ash using FTIR spectroscopy. Construction and Building Materials, 263, 120136. https://doi.org/10.1016/j.conbuildmat.2020.120136
  • Joshi, A. R., & Patel, S. (2023). Investigation into sustainable application of class C fly ash layer in flexible pavement. Journal of Hazardous, Toxic, and Radioactive Waste, 27(1), 1–11. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000727
  • Karami, H., Pooni, J., Robert, D., Costa, S., Li, J., & Setunge, S. (2021). Use of secondary additives in fly ash based soil stabilization for soft subgrades. Transportation Geotechnics, 29(January), 100585. https://doi.org/10.1016/j.trgeo.2021.100585
  • Khadka, S. D., Jayawickrama, P. W., Senadheera, S., & Segvic, B. (2020). Stabilization of highly expansive soils containing sulfate using metakaolin and fly ash based geopolymer modified with lime and gypsum. Transportation Geotechnics, 23(November 2018), 100327. https://doi.org/10.1016/j.trgeo.2020.100327
  • Kolias, S., Kasselouri-Rigopoulou, V., & Karahalios, A. (2005). Stabilisation of clayey soils with high calcium fly ash and cement. Cement and Concrete Composites, 27(2), 301–313. https://doi.org/10.1016/j.cemconcomp.2004.02.019
  • Kumar, J. S., & Sharma, P. (2018). Geotechnical properties of pond ash mixed with cement kiln dust and polypropylene fiber. Journal of Materials in Civil Engineering, 30(8), 8. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002334
  • Laveglia, A., Sambataro, L., Ukrainczyk, N., De Belie, N., & Koenders, E. (2022). Hydrated lime life-cycle assessment: Current and future scenarios in four EU countries. Journal of Cleaner Production, 369, 133224. https://doi.org/10.1016/j.jclepro.2022.133224
  • Li, Z., & Li, S. (2020). Effects of wetting and drying on alkalinity and strength of fly ash/slag-activated materials. Construction and Building Materials, 254, 119069. https://doi.org/10.1016/j.conbuildmat.2020.119069
  • Mogili, S., Mudavath, H., Gonavaram, K. K., & Paluri, Y. (2020). Strength and resilient behavior of lime modified pond ash as pavement layer. Materials Today: Proceedings, 32, 567–573. https://doi.org/10.1016/j.matpr.2020.02.168
  • Mogili, S., Paluri, Y., Noolu, V., Mudavath, H., & Gonavaram, K. K. (2021). Effect of lime on resilient characteristics of pond ash. Transportation Infrastructure Geotechnology, 8(4), 542–556. https://doi.org/10.1007/s40515-021-00152-z
  • Mohammadinia, A., Arulrajah, A., D’Amico, A., & Horpibulsuk, S. (2020). Alkali activation of lime kiln dust and fly ash blends for the stabilisation of demolition wastes. Road Materials and Pavement Design, 21(6), 1514–1528. https://doi.org/10.1080/14680629.2018.1555095
  • Mohanty, S., & Patra, N. R. (2015). Geotechnical characterization of Panki and Panipat pond ash in India. International Journal of Geo-Engineering, 6(1), 1. https://doi.org/10.1186/s40703-015-0013-4
  • Murmu, A. L., Dhole, N., & Patel, A. (2018). Stabilisation of black cotton soil for subgrade application using fly ash geopolymer. Road Materials and Pavement Design, 21(3), 867–885. https://doi.org/10.1080/14680629.2018.1530131
  • Murmu, A. L., Dhole, N., & Patel, A. (2020). Stabilisation of black cotton soil for subgrade application using fly ash geopolymer. Road Materials and Pavement Design, 21(3), 867–885. https://doi.org/10.1080/14680629.2018.1530131
  • Murmu, A. L., Jain, A., & Patel, A. (2019). Mechanical properties of alkali activated fly ash geopolymer stabilized expansive clay. KSCE Journal of Civil Engineering, 23(9), 3875–3888. https://doi.org/10.1007/s12205-019-2251-z
  • Ojuri, O. O., Adavi, A. A., & Oluwatuyi, O. E. (2017). Geotechnical and environmental evaluation of lime–cement stabilized soil–mine tailing mixtures for highway construction. Transportation Geotechnics, 10, 1–12. https://doi.org/10.1016/j.trgeo.2016.10.001
  • Pani, A., & Singh, S. P. (2019). Leaching of major and trace elements from ash beds treated with chemical columns. Journal of Hazardous, Toxic, and Radioactive Waste, 23(2), 1–11. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000438
  • Patil, B. M., & Patil, K. A. (2013). Effect of pond ash and RBI Grade 81 on properties of subgrade soil and base course of flexible pavement. International Journal of Advanced Technology in Civil Engineering, 7(22), 2231–5721.
  • Poltue, T., Suddeepong, A., Horpibulsuk, S., Samingthong, W., Arulrajah, A., & Rashid, A. S. A. (2020). Strength development of recycled concrete aggregate stabilized with fly ash-rice husk ash based geopolymer as pavement base material. Road Materials and Pavement Design, 21(8), 2344–2355. https://doi.org/10.1080/14680629.2019.1593884
  • Pouhet, R., & Cyr, M. (2015). Alkali–silica reaction in metakaolin-based geopolymer mortar. Materials and Structures, 48(3), 571–583. https://doi.org/10.1617/s11527-014-0445-x
  • Pradhip, V. P., Balu, S., & Subramanian, B. (2023). Pond ash as a potential material for sustainable geotechnical applications – A review. Environmental Science and Pollution Research, 30(46), 102083–102103. https://doi.org/10.1007/s11356-023-29671-7
  • Rios, S., Cristelo, N., Miranda, T., Araújo, N., Oliveira, J., & Lucas, E. (2018). Increasing the reaction kinetics of alkali-activated fly ash binders for stabilisation of a silty sand pavement sub-base. Road Materials and Pavement Design, 19(1), 201–222. https://doi.org/10.1080/14680629.2016.1251959
  • Rios, S., Ramos, C., Viana da Fonseca, A., Cruz, N., & Rodrigues, C. (2017). Mechanical and durability properties of a soil stabilised with an alkali-activated cement. European Journal of Environmental and Civil Engineering, 23(2), 245–267. https://doi.org/10.1080/19648189.2016.1275987
  • Sahoo, S., & Singh, S. P. (2022). Strength and durability properties of expansive soil treated with geopolymer and conventional stabilizers. Construction and Building Materials, 328(October 2021), 127078. https://doi.org/10.1016/j.conbuildmat.2022.127078
  • Saini, G., & Vattipalli, U. (2020). Assessing properties of alkali activated GGBS based self-compacting geopolymer concrete using nano-silica. Case Studies in Construction Materials, 12, e00352. https://doi.org/10.1016/j.cscm.2020.e00352
  • Salimi, M., & Ghorbani, A. (2020). Mechanical and compressibility characteristics of a soft clay stabilized by slag-based mixtures and geopolymers. Applied Clay Science, 184(November 2019), 105390. https://doi.org/10.1016/j.clay.2019.105390
  • Saludung, A., Azeyanagi, T., Ogawa, Y., & Kawai, K. (2023). Mechanical and microstructural evolutions of fly ash/slag-based geopolymer at high temperatures: Effect of curing conditions. Ceramics International, 49(2), 2091–2101. https://doi.org/10.1016/j.ceramint.2022.09.175
  • Samantasinghar, S., & Singh, S. P. (2018). Effect of synthesis parameters on compressive strength of fly ash-slag blended geopolymer. Construction and Building Materials, 170, 225–234. https://doi.org/10.1016/j.conbuildmat.2018.03.026
  • Samson, G., Cyr, M., & Gao, X. X. (2017). Formulation and characterization of blended alkali-activated materials based on flash-calcined metakaolin, fly ash and GGBS. Construction and Building Materials, 144, 50–64. https://doi.org/10.1016/j.conbuildmat.2017.03.160
  • Samuel, R. A. (2019). Synthesis of metakaolin-based geopolymer and its performance as sole stabilizer of expansive soils. The University of Texas at Arlington. http://www.pqdtcn.com/thesisDetails/EAB2BA90E51093BCBFF95B612FAE5C9E
  • Sarkar, R., & Dawson, A. R. (2017). Economic assessment of use of pond ash in pavements. International Journal of Pavement Engineering, 18(7), 578–594. https://doi.org/10.1080/10298436.2015.1095915
  • Savaş, H., Türköz, M., Seyrek, E., & Ünver, E. (2018). Comparison of the effect of using class C and F fly ash on the stabilization of dispersive soils. Arabian Journal of Geosciences, 11(20), 20. https://doi.org/10.1007/s12517-018-3976-6
  • Sharma, L. K., Sirdesai, N. N., Sharma, K. M., & Singh, T. N. (2018). Experimental study to examine the independent roles of lime and cement on the stabilization of a mountain soil: A comparative study. Applied Clay Science, 152, 183–195. http://dx.doi.org/10.1016/j.clay.2017.11.012
  • Sharma, A. K., & Sivapullaiah, P. V. (2016). Ground granulated blast furnace slag amended fly ash as an expansive soil stabilizer. Soils and Foundations, 56(2), 205–212. https://doi.org/10.1016/j.sandf.2016.02.004
  • Shen, W., Zhou, M., Ma, W., Hu, J., & Cai, Z. (2009). Investigation on the application of steel slag-fly ash-phosphogypsum solidified material as road base material. Journal of Hazardous Materials, 164(1), 99–104. https://doi.org/10.1016/j.jhazmat.2008.07.125
  • Si, R., Guo, S., Dai, Q., & Wang, J. (2020). Atomic-structure, microstructure and mechanical properties of glass powder modified metakaolin-based geopolymer. Construction and Building Materials, 254, 119303. https://doi.org/10.1016/j.conbuildmat.2020.119303
  • Singh, S. P., Tripathy, D. P., & Ranjith, P. G. (2008). Performance evaluation of cement stabilized fly ash-GBFS mixes as a highway construction material. Waste Management, 28(8), 1331–1337. https://doi.org/10.1016/j.wasman.2007.09.017
  • Sun, J., Zhang, Z., & Hou, G. (2020). Utilization of fly ash microsphere powder as a mineral admixture of cement: Effects on early hydration and microstructure at different curing temperatures. Powder Technology, 375, 262–270. https://doi.org/10.1016/j.powtec.2020.07.084
  • Suthar, M. (2020). Modeling of UCS value of stabilized pond ashes using adaptive neuro-fuzzy inference system and artificial neural network. Soft Computing, 24(19), 14561–14575. https://doi.org/10.1007/s00500-020-04806-x
  • Suthar, M., & Aggarwal, P. (2016). Environmental impact and physicochemical assessment of pond ash for its potential application as a fill material. International Journal of Geosynthetics and Ground Engineering, 2(3), 3. https://doi.org/10.1007/s40891-016-0061-7
  • Suthar, M., & Aggarwal, P. (2018a). Bearing ratio and leachate analysis of pond ash stabilized with lime and lime sludge. Journal of Rock Mechanics and Geotechnical Engineering, 10(4), 769–777. https://doi.org/10.1016/j.jrmge.2017.12.008
  • Suthar, M., & Aggarwal, P. (2018b). Predicting CBR value of stabilized pond ash with lime and lime sludge using ANN and MR models. International Journal of Geosynthetics and Ground Engineering, 4(1), 0. https://doi.org/10.1007/s40891-017-0125-3
  • Tan, T. H., Mo, K. H., Ling, T. C., & Lai, S. H. (2020). Current development of geopolymer as alternative adsorbent for heavy metal removal. Environmental Technology and Innovation, 18, 100684. https://doi.org/10.1016/j.eti.2020.100684
  • Varma, D. N., & Singh, S. P. (2023a). A review on waste glass-based geopolymer composites as a sustainable binder. Silicon, 15(18), 7685–7703. https://doi.org/10.1007/s12633-023-02629-7
  • Varma, D. N., & Singh, S. P. (2023b). Recycled waste glass as precursor for synthesis of slag-based geopolymer. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2023.03.516
  • Wang, D., Zentar, R., & Abriak, N. E. (2018). Durability and swelling of solidified/stabilized dredged marine soils with Class-F fly ash, cement, and lime. Journal of Materials in Civil Engineering, 30(3), 04018013. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002187
  • Wang, A., Zheng, Y., Zhang, Z., Liu, K., Li, Y., Shi, L., & Sun, D. (2020). The durability of alkali-activated materials in comparison with ordinary Portland cements and concretes: A review. Engineering, 6(6), 695–706. https://doi.org/10.1016/j.eng.2019.08.019
  • Zahmak, A., Abdallah, M., Jarah, B., & Arab, M. G. (2021). Environmental performance of alkali-activated binders for ground improvement. Transportation Geotechnics, 31, 100631. https://doi.org/10.1016/j.trgeo.2021.100631
  • Zhang, M., Guo, H., El-Korchi, T., Zhang, G., & Tao, M. (2013). Experimental feasibility study of geopolymer as the next-generation soil stabilizer. Construction and Building Materials, 47, 1468–1478. https://doi.org/10.1016/j.conbuildmat.2013.06.017

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.