172
Views
11
CrossRef citations to date
0
Altmetric
Original Articles

A causal continuous-time stochastic model for the turbulent energy cascade in a helium jet flow

&
Pages 1-26 | Received 06 May 2013, Accepted 05 Nov 2013, Published online: 10 Dec 2013

References

  • A.N. Kolmogorov, A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number, J. Fluid Mech. 13(1) (1962), 82–85.
  • A.M. Oboukhov, Some specific features of atmospheric turbulence, J. Fluid Mech. 13(1) (1962), 77–81.
  • U. Frisch, Turbulence, Cambridge University Press, Cambridge, 1995.
  • K.R. Sreenivasan and R. Antonia, The phenomenology of small-scale turbulence, Annu. Rev. Fluid Mech. 29 (1997), 435–472.
  • R. Benzi, S. Ciliberto, C. Baudet, G.R. Chavarria, and R Tripiccione, Extended self-similarity in the dissipation range of fully developed turbulence, Europhys. Lett. 24(4) (1993), 275–279.
  • J. Schmiegel, Self-scaling of turbulent energy dissipation correlators, Phys. Lett. A 337(4–6) (2005), 342–353.
  • J. Cleve, J. Schmiegel, and M. Greiner, Apparent scale correlations in a random multifractal process, Eur. Phys. J. B 63(1) (2008), 109–116.
  • A. Arneodo, E. Bacry, and J.F. Muzy, Random cascades on wavelet dyadic trees, J. Math. Phys. 39 (1998), 4142–4164.
  • R Benzi, L. Biferale, A. Crisanti, G. Paladin, M. Vergassola, and A. Vulpiani, A random process for the construction of multiaffine fields, Phys. D 65 (1993), 352–358.
  • L. Biferale, G. Boffetta, A. Celani, A. Crisanti, and A. Vulpiani, Mimicking a turbulent signal: Sequential multiaffine processes, Phys. Rev. E 57(6) (1998), R6261–R6264.
  • F.W. Elliot, Jr, A.J. Majda, D.J. Horntrop, and R.M McLaughlin, Hierarchical Monte Carlo methods for fractal random fields, J. Stat. Phys. 81(3/4) (1995), 717–736.
  • A. Juneja, D.P. Lathrop, K.R. Sreenivasan, and G. Stolovitzky, Synthetic turbulence, Phys. Rev. E 49(6) (1994), 5179–5194.
  • T. Vicsek and A.-L. Barabási, Multi-affine model for the velocity distribution in fully developed turbulent flows, J. Phys. A 24 (1991), L845–L851.
  • R. Benzi, G. Paladin, G. Parisi, and A. Vulpiani, On the multifractal nature of fully developed turbulence and chaotic systems, J. Phys. A 17(18) (1984), pp. 3521–3531.
  • J. Cleve and M. Greiner, The Markovian metamorphosis of a simple turbulent cascade model, Phys. Lett. A 273 (2000), 104–108.
  • U. Frisch, P.-L. Sulem, and M. Nelkin, A simple dynamical model of intermittent fully developed turbulence, J. Fluid Mech. 87(4) (1978), 719–736.
  • B. Jouault, M. Greiner, and P. Lipa, Fix-point multiplier distributions in discrete turbulent cascade models, Phys. D 136 (2000), 125–144.
  • B. Jouault, P. Lipa, and M. Greiner, Multiplier phenomenology in random multiplicative cascade processes, Phys. Rev. E 59 (1999), 2451–2454.
  • B.B. Mandelbrot, Intermittent turbulence in self-similar cascades: Divergence of high moments and dimension of the carrier, J. Fluid Mech. 62(2) (1974), 331–358.
  • C. Meneveau and K.R. Sreenivasan, The multifractal nature of turbulent energy dissipation, J. Fluid Mech. 224 (1991), 429–484.
  • D. Schertzer and S. Lovejoy, Physical modelling and analysis of rain and clouds by anisotropic scaling multiplicative processes, J. Geophys. Res. 92 (1987), 9693–9714.
  • J. Cleve, T. Dziekan, J. Schmiegel, O.E. Barndorff-Nielsen, B.R. Pearson, K.R. Sreenivasan, and M. Greiner, Finite-size scaling of two-point statistics and the turbulent energy cascade generators, Phys. Rev. E 71(2) (2005), 1–12.
  • E. Bacry and J.F. Muzy, Log-infinitely divisible multifractal processes, Comm. Math. Phys. 236(3) (2003), 449–475.
  • J. Barral and B.B. Mandelbrot, Multifractal products of cylindrical pulses, Probab. Theory Related Fields 124(3) (2002), 409–430.
  • J.F. Muzy and E. Bacry, Multifractal stationary random measures and multifractal random walks with log-infinitely divisible scaling laws, Phys. Rev. E 66 (2002), p. 056121.
  • F. Schmitt and D. Marsan, Stochastic equations generating continuous multiplicative cascades, Eur. Phys. J. B 20 (2001), 3–6.
  • S. Kida, Log-stable distributions and intermittency of turbulence, J. Phys. Soc. Japan 60 (1991), 5–8.
  • D. Schertzer, S. Lovejoy, F. Schmitt, Y. Chigirinskaya, and D. Marsan, Multifractal cascade dynamics and turbulent intermittency, Fractals 5 (1997), 427–471.
  • F. Schmitt, D. La Vallée, D. Schertzer, and S. Lovejoy, Empirical determination of universal multifractal exponents in turbulent velocity fields, Phys. Rev. Lett. 68 (1992), 305–308.
  • F. Schmitt, D. Schertzer, S. Lovejoy, and Y. Brunet, Estimation of universal multifractal indices for atmospheric turbulent velocity fields, Fractals 1(3) (1993), 568–575.
  • F.G. Schmitt, A causal multifractal stochastic equation and its statistical properties, Eur. Phys. J. B 34 (2003), 85–98.
  • F.G. Schmitt and P. Chainais, On causal stochastic equations for log-stable multiplicative cascades, Eur. Phys. J. B 58 (2007), 149–158.
  • O.E. Barndorff-Nielsen and J. Schmiegel, Lévy-based spatial-temporal modelling, with applications to turbulence, Russian Math. Surveys 59(1) (2004), pp. 65–90.
  • J. Schmiegel, J. Cleve, H.C. Eggers, B.R. Pearson, and M. Greiner, Stochastic energy-cascade model for (1 + 1)-dimensional fully developed turbulence, Phys. Lett. A 320(4) (2004), 247–253.
  • O.E. Barndorff-Nielsen, J. Kent, and M. Sørensen, Normal variance-mean mixtures and z distributions, Int. Stat. Rev. 50(2) (1982), 145–159.
  • B. Dubrulle, Intermittency in fully developed turbulence: Log-Poisson statistics and generalized scale covariance, Phys. Rev. Lett. 73(7) (1994), 959–962.
  • Z.-S. She and E. Leveque, Universal scaling laws in fully developed turbulence, Phys. Rev. Lett. 72(3) (1994), 336–339.
  • Z.-S. She and E. Waymire, Quantized energy cascade and Log-Poisson statistics in fully developed turbulence, Phys. Rev. Lett. 74(2) (1995), 262–265.
  • B.S. Rajput and J. Rosiński, Spectral representations of infinitely divisible processes, Probab. Theory Related Fields 82(3) (1989), 451–487.
  • J. Schmiegel, O.E. Barndorff-Nielsen, and H. Eggers, A class of spatio-temporal and causal stochastic processes, with application to multiscaling and multifractality, S. Afr. J. Sci. 101 (2005), 513–519.
  • J. Cleve, M. Greiner, B.R. Pearson, and K.R. Sreenivasan, Intermittency exponent of the turbulent energy cascade, Phys. Rev. E 69(6) (2004), 1–6.
  • G. Samorodnitsky and M.S. Taqqu, Stable Non-Gaussian Random Processes, Chapman & Hall, Boca Raton, Florida, 1994.
  • O. Chanal, B. Chabaud, B. Castaing, and B. Hébral, Intermittency in a turbulent low temperature gaseous helium jet, Eur. Phys. J. B 17(2) (2000), 309–317.
  • B. Fornberg, Generation of finite difference formulas on arbitrarily spaced grids, Math. Comp. 51 (1988), 699–706.
  • D.B. Percival and A.T. Walden, Spectral Analysis for Physical Applications: Multitaper and Conventional Univariate Techniques, Cambridge University Press, Cambridge, UK, 1993.
  • B. Efron and R. Tibshirani, An Introduction to the Bootstrap. Monographs on statistics and applied probability, Chapman & Hall, New York, 1993.
  • J. Cleve, M. Greiner, and K.R. Sreenivasan, On the effects of surrogacy of energy dissipation in determining the intermittency exponent in fully developed turbulence, Europhys. Lett. 61(6) (2003), pp. 756–761.
  • O.E. Barndorff-Nielsen, Exponentially decreasing distributions for the logarithm of particle size, Proc. R. Soc. Lond. A 353(1674) (1977), 401–419.
  • O.E. Barndorff-Nielsen, Hyperbolic distributions and distributions on hyperbolae, Scand. J. Statist. 5(3) (1978), 151–157.
  • O.E. Barndorff-Nielsen and C. Halgreen, Infinite divisibility of the hyperbolic and generalized inverse Gaussian distributions, Z. Wahrscheinlichkeitstheorie verw. Gebiete 38(4) (1977), 309–311.
  • O.E. Barndorff-Nielsen and P. Blæsild, Hyperbolic distributions and ramifications: Contributions to theory and application, in Statistical Distributions in Scientific Work, Vol. 4, C. Taillie, G. Patil, and B. Baldessari eds., Reidel, Dordrecht, 1981, 19–44.
  • P. Blæsild, The shape cone of the d-dimensional hyperbolic distribution, Tech. Rep., Department of Theoretical Statistics, Institute of Mathematics, University of Aarhus, Report no. 208, Aarhus, Denmark, 1990.
  • E. Eberlein and E. August v. Hammerstein, Generalized hyperbolic and inverse gaussian distributions: Limiting cases and approximation of processes, Seminar on Stochastic Analysis, Random Fields and Applications IV, Volume 58 of Progress in Probability, R.C. Dalang, M. Dozzi, and F. Russo, eds., Birkhäuser Verlag, Basel, Switzerland, 2004, pp. 221–264.
  • O.E. Barndorff-Nielsen, P. Blæsild, and J. Schmiegel, A parsimonious and universal description of turbulent velocity increments, Eur. Phys. J. B 41 2004, pp. 345–363.
  • K. Prause, The generalized hyperbolic model: Estimation, financial derivatives and risk measures, Ph.D. thesis, Albert-Ludwigs University, 1999.
  • P. Blæsild and M.K. Sørensen, Hyp: A computer program for analyzing data by means of the hyperbolic distribution, Tech, Rep., Department of Theoretical Statistics, Institute of Mathematics, University of Aarhus, Report no. 248, Aarhus, Denmark, 1992.
  • Dimitris Karlis, An EM type algorithm for maximum likelihood estimation of the normal-inverse Gaussian distribution, Statist. Probab. Lett. 57(1) (2002), 43–52.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.