218
Views
12
CrossRef citations to date
0
Altmetric
Original Articles

A minimal flow unit for the study of turbulence with passive scalars

, , &
Pages 731-751 | Received 22 Nov 2013, Accepted 16 May 2014, Published online: 31 Jul 2014

References

  • T. Ishihara, T. Gotoh, and Y. Kaneda, Study of high-Reynolds number isotropic turbulence by direct numerical simulation, Annu. Rev. Fluid Mech. 41 (2009), pp. 165--180.
  • D.A. Donzis, K.R. Sreenivasan, and P.K. Yeung, The Batchelor spectrum for mixing of passive scalars in isotropic turbulence, Flow Turbul. Combust. 85 (2010), pp. 549--566.
  • T. Gotoh and P.K. Yeung, Passive scalar transport in turbulence: A computational perspective, in Ten Chapters in Turbulence, P.A. Davidson, Y. Kaneda, and K.R. Sreenivasan, eds., Cambridge University Press, Cambridge, UK, 2013, pp. 87--131.
  • R.A. Orlandi and P. Antonia, Dependence of a passive scalar in decaying isotropic turbulence on the Reynolds and Schmidt numbers using the EDQNM model, J. Turbul. 5 (2004), p. 9.
  • J. Jimenez and P. Moin, The minimal flow unit in near-wall turbulence, J. Fluid Mech. 225 (1991), pp. 213--240.
  • T. Grafke, H. Homann, J. Dreher, and R. Grauer, Numerical simulations of possible finite time singularities in the incompressible Euler equations: Comparison of numerical methods, Phys. D 237 (2008), pp. 1932--1936.
  • R.M. Kerr, Evidence for a singularity of the three-dimensional, incompressible Euler equations, Phys. Fluids A 5 (1993), pp. 1725--1746.
  • S. Kida, Three-dimensional periodic flows with high-symmetry, J. Phys. Soc. Japan 54 (1985), pp. 2132--2136.
  • O.N. Boratav and R.B. Pelz, Direct numerical simulation of transition to turbulence from a high-symmetry initial condition, Phys. Fluids 6 (1994), pp. 2757--2784.
  • V.V. Meleshko and G.J.F. van Heijst, On Chaplygin’s investigations of two-dimensional vortex structures in an inviscid fluid, J. Fluid Mech. 272 (1994), pp. 157--157.
  • S.A. Chaplygin, One case of vortex motion in fluid, Regul. Chaotic Dyn. 12 (2007), pp. 219--232.
  • P. Orlandi and G.F. Carnevale, Nonlinear amplification of vorticity in inviscid interaction of orthogonal Lamb dipoles, Phys. Fluids 5 (2007), 057106.
  • T. Grafke and R. Grauer, Lagrangian and geometric analysis of finite-time Euler singularities, Procedia IUTAM 9 (2013), pp. 32--56.
  • R.M. Kerr, The growth of vorticity moments in the Euler equations, Procedia IUTAM 7 (2013), pp. 49--58.
  • M.D. Bustamante and M. Brachet, On the interplay between the BKM theorem and the analyticity-strip method to investigate numerically the incompressible Euler singularity, Phys. Rev. E 86 (2012), 066302.
  • D.A. Donzis, J.D. Gibbon, A. Gupta, R.M. Kerr, R. Pandit, and D. Vincenzi, Vorticity moments in four numerical simulations of the 3D Navier-Stokes equations, J. Fluid Mech. 732 (2013), pp. 316--331.
  • P. Orlandi, S. Pirozzoli, and G.F. Carnevale, Vortex events in Euler and Navier-Stokes simulations with smooth initial conditions, J. Fluid Mech. 690 (2012), pp. 288--320.
  • P. Orlandi, Energy spectra power laws and structures, J. Fluid Mech. 623 (2009), pp. 353--374.
  • C. Cichowlas and M. Brachet, Evolution of complex singularities in Kida-Pelz and Taylor-Green inviscid flows, Fluid Dyn. Res. 36 (2005), pp. 239--248.
  • P. Orlandi, Fluid Flow Phenomena: A Numerical Toolkit, Kluwer, Dordecht, 2000.
  • M. Duponcheel, P. Orlandi, and G. Winckelmans, Time-reversibility of the Euler equations as a benchmark for energy conserving schemes, J. Comput. Phys. 227 (2008), pp. 8736--8752.
  • A. Tsinober and B. Galanti, Exploratory numerical experiments on the differences between genuine and “passive” turbulence, Phys. Fluids 15 (2003), pp. 3514--3531.
  • S. Corrsin, Remarks on turbulent heat transfer. An account of some features of the phenomenon in fully turbulent region, Proceedings of 1st Iowa Symposium on Thermodynamics, Iowa City, IA, 1953.
  • M.D. Bustamante and R.M. Kerr, 3D Euler about a 2D symmetry plane, Phys. D 237 (2008), pp. 1912--1920.
  • A. Tsinober, An Informal Introduction to Turbulence, Kluwer Academic Publishers, Dordecht, 2001.
  • J. Jimenez, A.A. Wray, P.G. Saffman, and R.S. Rogallo, The structure of intense vorticity in isotropic turbulence, J. Fluid Mech. 255 (1993), pp. 65--90.
  • D.A. Donzis and K.R. Sreenivasan,, The bottleneck effect and the Kolmogorov constant in isotropic turbulence, J. Fluid Mech. 657 (2010), pp. 171--180.
  • K.R. Sreenivasan, The passive scalar spectrum and the Obukhov-Corrsin constant, Phys. Fluids 8 (1996), pp. 189--196.
  • P.K. Yeung, D.A. Donzis, and K.R. Sreenivasan, High-Reynolds-number simulation of turbulent mixing, Phys. Fluids 17 (2005), 081703.
  • Z. Warhaft, Passive scalars in turbulent flows, Annu. Rev. Fluid Mech. 32 (2000), pp. 203--240.
  • R.A. Antonia and P. Orlandi, Effect of Schmidt number on small-scale passive scalar turbulence, Appl. Mech. Rev. 56 (2003), pp. 615--632.
  • L. Wang and N. Peters, A new view of flow topology and conditional statistics in turbulence, Philos. Trans. R. Soc. A 371 (2013), 20120169.
  • S. Pirozzoli, Numerical methods for high-speed flows, Annu. Rev. Fluid Mech. 43 (2011), pp. 163--194.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.