625
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Comparisons of different implementations of turbulence modelling in lattice Boltzmann method

, , , &
Pages 67-80 | Received 01 Apr 2014, Accepted 09 Aug 2014, Published online: 10 Oct 2014

References

  • H. Chen, S. Chen, and H. Matthaeus, Recovery of the Navier-Stokes equation using a lattice Boltzmann method, Phys. Rev. A 45 (1992), pp. R5339–R5342.
  • Y. Qian, D. d’Humières, and P. Lallemand, Lattice BGK models for Navier-Stokes equations, Europhys. Lett. 17 (1992), pp. 479–484.
  • F. Higuera, S. Succi, and R. Benzi, Lattice gas dynamics with enhanced collisions, Europhys. Lett. 9 (1989), pp. 345–349.
  • R. Benzi, S. Succi, and M. Vergassola, The lattice Boltzmann equation: Theory and applications, Phys. Rep. 222 (1992), pp. 145–197.
  • S. Chen and G. Doolen, Lattice Boltzmann method for fluid flows, Annu. Rev. Fluid Mech. 30 (1998), pp. 329–364.
  • D. Yu, R. Mei, L. Luo, and W. Shyy, Various flow computations with the method of lattice Boltzmann equation, Prog. Aerosp. Sci. 39 (2003), pp. 329–367.
  • C. Aidun and J. Clausen, Lattice Boltzmann method for complex flows, Annu. Rev. Fluid Mech. 42 (2010), pp. 439–472.
  • D. Martinez, W. Matthaeus, S. Chen, and D. Montgomery, Comparison of spectral method and lattice Boltzmann simulations of two-dimensional hydrodynamics, Phys. Fluids 6 (1994), pp. 1285–1298.
  • R. Benzi and S. Succi, Two-dimensional turbulence with the lattice Boltzmann equation, J. Phys. A 23 (1990), pp. L1–5.
  • Y. Qian, S. Succi, and S. Orszag, Recent advances in lattice Boltzmann computing, Annu. Rev. Comput. Phys. 3 (1995), pp. 195–242.
  • J. Eggels, Direct and large-eddy simulation of turbulent fluid flow using the lattice-Boltzmann scheme, Int. J. Heat Fluid Flow 17 (1996), pp. 307–323.
  • H. Yu, S. Girimaji, and L. Luo, Lattice Boltzmann simulations of decaying homogeneous isotropic turbulence, Phys. Rev. E 71 (2005), 016708.
  • Y. Peng, W. Liao, L. Luo, and L. Wang, Comparison of the lattice Boltzmann and pseudo-spectral methods for decaying turbulence: Low-order statistics, Comput. Fluids 39 (2010), pp. 568–591.
  • L. Wang, O. Ayala, H. Gao, C. Andersen, and K. Mathews, Study of forced turbulence and its modulation by finite-size solid particles using the lattice Boltzmann approach, Comput. Math. Appl. 67 (2014), pp. 363–380.
  • D. d’Humières, I. Ginzburg, M. Krafczyk, P. Lallemand, and L.S. Luo, Multiple-relaxation-time lattice Boltzmann models in three-dimensions, Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 360 (2002), pp. 437–451.
  • Z. Guo, C. Zheng, and B. Shi, Discrete lattice effects on the forcing term in the lattice Boltzmann method, Phys. Rev. E 65 (2002), 046308.
  • S. Chikatamarla and I. Karlin, Entropic lattice Boltzmann method for turbulent flow simulations: Boundary conditions, Phys. A 392 (2013), pp. 1925–1930.
  • S. Chikatamarla, S. Ansumali, and I. Karlin, Entropic lattice Boltzmann models for hydrodynamics in three dimensions, Phys. Rev. Lett. 97 (2006), 010201.
  • S. Hou, J. Sterling, S. Chen, and G. Doolen, A lattice Boltzmann subgrid-scale model for high Reynolds number flows, Fields Inst. Commun. 6 (1996), pp. 151–166.
  • H. Yu and S. Girimaji, Near-field turbulent simulations of rectangular jets using lattice Boltzmann method, Phys. Fluids 17 (2005), 125106.
  • H. Yu, S. Girimaji, and L. Luo, DNS and LES of decaying isotropic turbulence with and without frame rotation using lattice Boltzmann method, J. Comput. Phys. 209 (2005), pp. 599–616.
  • H. Yu, L. Luo, and S. Girimaji, LES of turbulent square jet flow using an MRT lattice Boltzmann model, Comput. Fluids 35 (2006), pp. 957–965.
  • J. Orphee, A. Gungor, M. Sanchez_Rocha, and S. Menon, Direct and large-eddy simulation of decaying and forced isotropic turbulence using lattice Boltzmann method, 36th AIAA Fluid Dynamics Conference and Exhibit, AIAA-2006-3904, San Francisco, CA, 2006.
  • Y. Dong and P. Sagaut, A study of time correlations in lattice Boltzmann-based large-eddy simulation of isotropic turbulence, Phys. Fluids 20 (2008), 035105.
  • Y. Dong, P. Sagaut, and S. Marie, Inertial consistent subgrid model for large-eddy simulation based on the lattice Boltzmann method, Phys. Fluids 20 (2008), 035104.
  • K. Premnath, M. Pattison, and S. Banerjee, Generalized lattice Boltzmann equation with forcing term for computation of wall-bounded turbulent flows, Phys. Rev. E 79 (2009), 026703.
  • K. Premnath, M. Pattison, and S. Banerjee, Dynamic subgrid scale modeling of turbulent flows using lattice-Boltzmann method, Phys. A 388 (2009), pp. 2640–2658.
  • H. Chen, S. Kandasamy, S. Orszag, R. Shock, S. Succi, and V. Yakhot, Extended Boltzmann kinetic equation for turbulent flows, Science 301 (2003), pp. 633–636.
  • H. Chen, S. Orszag, I. Staroselsky, and S. Succi, Expanded analogy between Boltzmann kinetic theory of fluids and turbulence, J. Fluid Mech. 519 (2004), pp. 301–314.
  • D. Wilcox, Turbulence Modeling for CFD, DCW Industries, La Cañada, CA, 2006.
  • S. Pope, Turbulent Flows, Cambridge University Press, Cambridge, UK, 2000.
  • S. Stolz and N. Adams, An approximate deconvolution procedure for large-eddy simulation, Phys. Fluids 11 (1999), pp. 1699–1701.
  • S. Chen, Z. Xia, S. Pei, J. Wang, Y. Yang, Z. Xiao, and Y. Shi, Reynolds-stress-constrained large-eddy simulation of wall-bounded turbulent flows, J. Fluid Mech. 703 (2012), pp. 1–28.
  • P. Sagaut, Toward advanced subgrid models for lattice-Boltzmann-based large-eddy simulation: Theoretical formulations, Comput. Math. Appl. 59 (2010), pp. 2194–2499.
  • O. Malaspinas and P. Sagaut, Consistent subgrid scale modelling for lattice Boltzmann methods, J. Fluid Mech. 700 (2012), pp. 514–542.
  • X. He and L. Luo, Lattice Boltzmann model for the incompressible Navier–Stokes equation, J. Stat. Phys. 88 (1997), pp. 927–944.
  • R. Anderson and C. Meneveau, Effects of the similarity model in finite-difference LES of isotropic turbulence using a Lagrangian dynamic mixed model, Flow Turbul. Combust. 62 (1999), pp. 201–225.
  • J. Smagorinsky, General circulation experiments with the primitive equations: I. The basic equation, Monthly Weather Rev. 91 (1963), pp. 99–164.
  • Y. Zang, R. Street, and J. Koseff, A dynamic mixed subgrid-scale model and its application to turbulent recirculating flows, Phys. Fluids A 5 (1993), pp. 3186–3196.
  • S. Liu, C. Meneveau, and J. Katz, Experimental study of similarity subgrid-scale models of turbulence in the far-field of a jet, Appl. Sci. Res. 54 (1995), pp. 177–190.
  • B. Vreman, B. Geurts, and H. Kuerten, Large-eddy simulation of the turbulent mixing layer, J. Fluid Mech. 339 (1997), pp. 357–390.
  • J. Li and Z. Wang, An alternative scheme to calculate the strain rate tensor for the LES applications in the LBM, Math. Prob. Eng. 2010 (2010), 724578.
  • S. Ansumali, I. Karlin, and S. Succi, Kinetic theory of turbulence modeling: Smallness parameter, scaling and microscopic derivation of Smagorinsky model, Phys. A 338 (2004), pp. 379–394.
  • R. Benzi, S. Ciliberto, R. Tripiccione, C. Baudet, F. Massaioli, and S. Succi, Extended self-similarity in turbulent flows, Phys. Rev. E 48 (1993), pp. R29–R32.
  • M. Briscolini, P. Santangelo, S. Succi, and R. Benzi, Extended self-similarity in the numerical simulation of three-dimensional homogeneous flows, Phys. Rev. E 50 (1994), pp. R1745–R1747.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.