202
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Assessment of subgrid-scale stress statistics in non-premixed turbulent wall-jet flames

, , &
Pages 471-490 | Received 28 May 2015, Accepted 28 Nov 2015, Published online: 22 Feb 2016

References

  • Vervisch L, Poinsot T. Direct numerical simulation of non-premixed turbulent flames. Annu Rev Fluid Mech. 1998;30:655–691.
  • Pitsch H. Large-eddy simulation of turbulent combustion. Annu Rev Fluid Mech. 2006;38:453–482.
  • Chumakov SG. A priori study of subgrid-scale flux of a passive scalar in isotropic homogeneous turbulence. Phys Rev E. 2008;78:036313.
  • Rasam A, Brethouwer G, Johansson AV. An explicit algebraic model for the subgrid-scale passive scalar flux. J Fluid Mech. 2013;721:541–577.
  • Wang BC, Yee E, Bergstrom DJ, et al. New dynamic subgrid-scale heat flux models for large-eddy simulation of thermal convection based on the general gradient diffusion hypothesis. J Fluid Mech. 2008;604:125–163.
  • Vervisch L. Using numerics to help the understanding of non-premixed turbulent flames. Proc Combust Inst. 2000;28:11–24.
  • Réveillon J, Vervisch L. Response of the dynamic LES model to heat release induced effects. Phys Fluids. 1996;8:2248–2250.
  • Pouransari Z, Vervisch L, Johansson A. Heat release effects on mixing scales of non-premixed turbulent wall-jets: a DNS study. Int J Heat Fluid Flows. 2013;40:65–80.
  • Pouransari Z, Biferale L, Johansson AV. Statistical analysis of the velocity and scalar fields in reacting turbulent wall-jets. Phys Fluids. 2015;27:025102.
  • Ruetsch GR, Vervisch L, Linan A. Effects of heat release on triple flames. Phys Fluids. 1995;7:1447–1454.
  • Boratav O, Elghobashi S, Zhong R. On the alignment of strain, vorticity and scalar gradient in turbulent, buoyant, nonpremixed flames. Phys Fluids. 1998;10:2260–2267.
  • Boratav O, Elghobashi S, Zhong R. On the alignment of the α-strain and vorticity in turbulent nonpremixed flames. Phys Fluids. 1996;8:2251–2253.
  • Tao B, Katz J, Meneveau C. Statistical geometry of subgrid-scale stresses determined from holographic particle image velocimetry measurements. J Fluid Mech. 2002;457:35–78.
  • Kang HS, Meneveau C. Effect of large-scale coherent structures on subgrid-scale stress and strain-rate eigenvector alignments in turbulent shear flow. Phys Fluids. 2005;17:055103.
  • Rasam A. Anisotropy-resolving subgrid-scale modelling using explicit algebraic closures for large eddy simulation [PhD thesis]. Stockholm: KTH Royal Institute of Technology; 2014.
  • da Silva CB, Pereira JC. The effect of subgrid-scale models on the vortices computed from large-eddy simulations. Phys Fluids. 2004;16:4506–4534.
  • Hauët G, da Silva CB, Pereira JC. The effect of subgrid-scale models on the near wall vortices: a priori tests. Phys Fluids. 2007;19:051702.
  • Pouransari Z. Numerical studies of turbulent flames in wall-jet flows [PhD thesis]. Stockholm: KTH Royal Institute of Technology; 2015.
  • Pouransari Z, Brethouwer G, Johansson AV. Direct numerical simulation of an isothermal reacting turbulent wall-jet. Phys Fluids. 2011;23:085104.
  • Pouransari Z, Vervisch L, Johansson AV. Reynolds number effects on statistics and structure of an isothermal reacting turbulent wall-jet. Flow Turbul Combust. 2014;92:931–945.
  • Boersma B. Direct numerical simulation of a turbulent reacting jet. Stanford: Annual Research Briefs, Center for Turbulence Research, Stanford University; 1999; p. 59–72.
  • Pouransari Z, Vervisch L, Fuchs L, et al. DNS analysis of wall-heat transfer and combustion regimes in a turbulent non-premixed wall-jet flame. J Flow Turbul Combust. Forthcoming 2016.
  • Leonard A. Energy cascade in large-eddy simulations of turbulent fluid flows. Adv. Geophys. 1975;18:237–248.
  • Katopodes FV, Street R, Ferziger J. Subfilter-scale scalar transport for large-eddy simulation. In: 14th Symposium on Boundary Layers and Turbulence. Aspen (CO): American Meteorologic Society; 2000. p. 472–475.
  • Moureau V, Domingo P, Vervisch L. From large-eddy simulation to direct numerical simulation of a lean premixed swirl flame: filtered laminar flame-PDF modeling. Combust Flame. 2011;158:1340–1357.
  • Sagaut P. Large eddy simulation for incompressible flows. Vol. 3. Berlin: Springer; 2000.
  • O’Brien J, Urzay J, Ihme M, et al. Subgrid-scale backscatter in reacting and inert supersonic hydrogen–air turbulent mixing layers. J Fluid Mech. 2014;743:554–584.
  • Vallis GK. Atmospheric and oceanic fluid dynamics: fundamentals and large-scale circulation. New York: Cambridge University Press; 2006.
  • Lund TS, Rogers MM. An improved measure of strain state probability in turbulent flows. Phys Fluids. 1994;6:1838–1847.
  • Lumley JL, Newman GR. The return to isotropy of homogeneous turbulence. J Fluid Mech. 1977;82:161–178.
  • Lumley JL. Computational modelling of turbulent flows. Adv Appl Mech. 1979;18:123–176.
  • Horiuti K. Roles of non-aligned eigenvectors of strain-rate and subgrid-scale stress tensors in turbulence generation. J Fluid Mech. 2003;491:65–100.
  • Meneveau C. Statistics of turbulence subgrid-scale stresses: necessary conditions and experimental tests. Phys Fluids. 1994;6:815–833.
  • Rasam A, Brethouwer G, Johansson AV. A stochastic extension of the explicit algebraic subgrid-scale models. Phys Fluids. 2014;26:055113.
  • Cerutti S, Meneveau C, Knio OM. Spectral and hyper eddy viscosity in high-Reynolds-number turbulence. J Fluid Mech. 2000;421:307–338.
  • Rasam A, Wallin S, Brethouwer G, et al. Large eddy simulation of channel flow with and without periodic constrictions using the explicit algebraic subgrid-scale model. J Turbul. 2014;15:752–775.
  • Rasam A, Brethouwer G, Schlatter P, et al. Effects of modelling, resolution and anisotropy of subgrid-scales on large eddy simulations of channel flow. J Turbul. 2011;12:1–20.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.