383
Views
11
CrossRef citations to date
0
Altmetric
Original Articles

Adaptation of mesoscale turbulence parameterisation schemes as RANS closures for ABL simulations

&
Pages 966-997 | Received 07 Feb 2016, Accepted 05 Jul 2016, Published online: 11 Aug 2016

References

  • Chotamonsak C, Salathé EP, Kreasuwan J, et al. Projected climate change over Southeast Asia simulated using a WRF regional climate model. Atmos. Sci. Lett. 2011;12:213–219.
  • Lundquist JK, Mirocha JD. Interaction of nocturnal low-level jets with urban geometries as seen in joint urban 2003 data. J Appl Meteorol Climatol. 2007;52:47–44.
  • Tie X, Madronich S, Li G., et al. Characterization of chemical oxidants in Mexico City: a regional chemical dynamical model (WRF-Chem) study. Atmos Environ. 2007;41:1989–2008.
  • Wang Y, Basu S, Manuel L. Realistic turbulence inflow generation for wind turbine design. 50th AIAA Aerospace Meeting; 2012 January; Nashville, Tennessee. AIAA.
  • Jothiprakasam D. Downscaling wind energy resource from mesoscale to local scale by nesting and data assimilation [ Doctoral dissertation]. Paris Est; 2014.
  • Wyszogrodzki AA, Miao S, Chen F. Evaluation of coupling between mesoscale-WRF and LES-EULAG models for simulating fine-scale urban dispersion. Atmos Res. 2012;118:324–345.
  • Alinot C, Masson C. Aerodynamic simulations of wind turbines operating in atmospheric boundary layer with various thermal stratifications. 50th AIAA Aerospace Meeting; 2002 January; Nashville, Tennessee. AIAA.
  • Pontiggia M, Derudi M, Busini V, et al. Hazardous gas dispersion: a CFD model accounting for atmospheric stability classes. J Hazard Mater. 2009;171:739–747.
  • Parente A, Gorlé C, van Beeck J, Benocci C. A comprehensive modelling approach for the neutral atmospheric boundary layer: Consistent inflow conditions, wall function and turbulence model. Bound Layer Meteorol. 2011;140(3):411–428.
  • Parente A, Gorlé C, Van Beeck J, Benocci C. Improved k–ε model and wall function formulation for the RANS simulation of ABL flows. J Wind Eng Ind Aerodyn. 2011;99(4):267–278.
  • Foken T. 50 years of the Monin–Obukhov similarity theory. Bound Layer Meteorol. Bound Layer Meteorol. 2006;119(3):431–447.
  • Alinot C, Masson C. k–ε model for the atmospheric boundary layer under various thermal stratifications. J Sol Energy Eng. 2005;127:438–443.
  • Gryning SE, Batchvarova E, Brummer B, et al. Extending the wind profile much higher than the surface layer. 2009 European Wind Energy Conference and Exhibition, 16–19 March 2009; Marseille, France.
  • Pena Diaz A, Gryning SE, Hasager CB, et al. On the extension of the wind profile over homogeneous terrain beyond the surface boundary layer. Bound Layer Meteorol. 2007;124:251–268.
  • Bosveld FC, Baas P, Steeneveld GJ, et al. The third GABLS intercomparison case for evaluation studies of boundary-layer models. Part B: results and process understanding. Bound Layer Meteorol. 2014;152:157–187.
  • Storm B, Dudhia J, Basu S, et al. Evaluation of the weather research and forecasting model on forecasting low-level jets: implications for wind energy. Wind Energy. 2009;12:81–90.
  • Kesarkar AP, Dalvi M, Kaginalkar A, et al. Coupling of the weather research and forecasting model with AERMOD for pollutant dispersion modeling. A case study for PM10 dispersion over Pune, India. Atmos Environ. 2007;41:1976–1988.
  • Patton EG, Coen JL. A coupled atmosphere-fire module for WRF. In: Preprints of Joint MM5/Weather Research and Forecasting Model Users Workshop; 2004 June; Boulder, CO; p. 22–25.
  • Detering H, Etling D. Application of the E - ε model to the atmospheric boundary layer. Bound Layer Meteorol. 1985;33:113–133.
  • Taylor PA, Teunissen HW. Askervein hill project: Report on the September/October 1983 main field experiment. 1985. Internal Rep. MSRB-84-6, Atmos Environ Service; Downsview, Ontario, Canada.
  • Munoz-Esparza D, Kosovic B, Garcia-Sanchez C, et al. Nesting turbulence in an offshore convective boundary layer using large eddy simulations. Bound Layer Meteorol. 2014;151:453–478.
  • Skamarock WC, Klemp JB, Dudhia J, et al. A description of the advanced research WRF Version 3. NCAR Technical Note, NCAR/TN475+STR. 2008; Boulder, Colorado, USA.
  • Troen I, Mahrt L. A simple model of the atmospheric boundary layer: sensitivity to surface evaporation. Bound Layer Meteorol. 1986;37:453–478.
  • Janjic, ZI. The surface layer in the NCEP Eta model. Eleventh conference on numerical weather prediction, Norfolk, VA; 1923 August 1996. Amer Meteor Soc, Boston, MA; p. 354–355.
  • Paulson CA. The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer. J Appl Meteor. 1970;9:857–861.
  • Hong SY, Pan HL. Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Monthly Weather Rev. 1996;124:2322–2339.
  • Hong S-Y, Noh Y, Dudhia J. A new vertical diffusion package with an explicit treatment of entrainment processes. Monthly Weather Rev. 2005;134:2318–2341.
  • Bougeault P, Lacarrere P. Parameterization of orography-induced turbulence in a mesobeta-scale model. Monthly Weather Rev. 1989;117:1872–1890.
  • Yamada T, Mellor G. Development of a turbulent closure model for geophysical fluid problems. Rev Geophys Space Phys. 1982;40–41:851–875.
  • Nakanishi M, Niino H. An improved Mellor–Yamada level 3 model: its numerical stability and application to a regional prediction of advecting fog. Bound Layer Meteorol. 2006;119;397–407.
  • Nakanishi M, Niino H. Development of an improved turbulence closure model for the atmospheric boundary layer. J Meteorol Soc Japan. 2009;87;895–912.
  • Sukoriansky S, Galperin B, Perov V. Application of a new spectral model of stratified turbulence to the atmospheric boundary layer over sea ice. Bound Layer Meteorol. 2005;117:231–257.
  • Bretherton, CS, Park S. A new moist turbulence parameterization in the Community Atmosphere Model. J Climate. 2009;22:3422–3448.
  • O’Brien JJ. A note on the vertical structure of the eddy exchange coefficient in the planetary boundary layer. J Atmos Sci. 1970;27:1213–1215.
  • Stull RB. Review of non-local mixing in turbulent atmospheres: transilient turbulence theory. Bound Layer Meteorol. 1993;62:21–96.
  • Kim J, Mahrt L. Simple formulation of turbulent mixing in the stable free atmosphere and nocturnal boundary layer. Tellus. 1992;44A:381–394.
  • Dudhia J. A multi-layer soil temperature model for MM5. The Sixth PSU/NCAR Mesoscale Model Users’ Workshop; 22–24 July 1996; Boulder, Colorado; p. 49–50.
  • Janjic ZI. Nonsingular implementation of the Mellor–Yamada level 2.5 scheme in the NCEP Meso model. NCEP Office Note. 2002;437:61.
  • Siebesma AP, Soares PM, Teixeira J. A combined eddy-diffusivity mass-flux approach for the convective boundary layer. J Atmos Sci. 2007;64:1230–1248.
  • Bretherton CS, McCaa JR, Grenier H. A new parameterization for shallow cumulus convection and its application to marine subtropical cloud-topped boundary layers. Part I: description and 1D results. Monthly Weather Rev. 2004;132:864–882.
  • Done J, Davis CA, Weisman M. The next generation of NWP: Explicit forecasts of convection using the weather research and forecasting (WRF) model. Atmospheric Science Letters. 2004;5(6):110–117.
  • Lundquist KA. Implementation of the immersed boundary method in the WRF model [Ph.D. dissertation]. Berkeley: University of California; 2010.
  • Colorado NOAA/OAR/ESRL PSD, Boulder. NCEP reanalysis. Available from: http://www.esrl.noaa.gov/psd/; p. 209–212.
  • Temel O. Evaluation of urban canopy models over Oklahoma region with the Weather Research and Forecasting model. von Karman Institute for Fluid Dynamics; 2013, Rhode-Saint-Genese, Belgium. ( Research Master Project Report).
  • Taylor PA, Teunissen HW. The Askervein Hill project: overview and background data. Bound Layer Meteorol. 1987;39;15–39.
  • Undheim O, Andersson HI, Berge E. Non-linear, microscale modelling of the flow over Askervein Hill. Bound Layer Meteorol. 2006;120;477–495.
  • Bechmann A. Large-eddy simulation of atmospheric flow over complex terrain [Ph.D. dissertation]. Technical University of Denmark; 2006; 104 p.
  • Lopes AS, Palma JMLM, Castro FA. Simulation of the Askervein flow. Part 2: large-eddy simulations. Bound Layer Meteorol. 2007;125:85–108.
  • Shin HH, Hong SY. Impacts of the lowest model level height on the performance of planetary boundary layer parameterizations. Monthly Weather Rev. 2012;140:664–682.
  • Fritsch JW, Kain JS. Convective parameterization for mesoscale models: the Kain–Fritcsh scheme, representation of cumulus convection in numerical models. 1993; Part of the series Meteorological Monographs; American Meteorological Society; p. 165–170.
  • Mlawer EJ, Taubman SJ, Brown PD, et al. Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the longwave. J Geophys Res. 1997;102:166–316.
  • Thompson G, Field PR, Rasmussen RM, et al. Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: implementation of a New Snow parameterization. J Geophys Res. 2008;136:5095–5115.
  • Coniglio MC, Correia J Jr, Marsh PT, et al. Verification of convection-allowing WRF model forecasts of the planetary boundary layer using sounding observations. Weather Forecast. 2013;28(3), 842–862.
  • Jakobson E, Vihma T, Palo T, et al. Validation of atmospheric reanalyses over the central Arctic Ocean. Geophys Res Lett. 2012;39.
  • García-Díez M, Fernández J, Fita L, et al. Seasonal dependence of WRF model biases and sensitivity to PBL schemes over Europe. Q J R Meteorol Soc. 2013;139:501–514.
  • Muñoz Esparza D. Multiscale modelling of atmospheric flows: towards improving the representation of boundary layer physics [Ph.D. dissertation]. von Karman Institute for Fluid Dynamics (Rhode-St-Genese, Belgium) – Universite Libre de Bruxelles (Brussels, Belgium); 2013.
  • Panofsky HA, Dutton JA. Atmospheric turbulence: Models and methods for engineering applications. New York: Wiley; 1984; pp. 397.
  • Hargreaves D, Wright N. On the use of the k-ε model in commercial CFD software to model the neutral atmospheric boundary layer. J Wind Eng Ind Aerodyn. 2007;95:355–369.
  • Chow FK, Street RL. Evaluation of turbulence closure models for large-eddy simulation over complex terrain: flow over Askervein Hill. J Appl Meteorol Climatol. 2009;48:1050–1065.
  • Balogh M, Parente A, Benocci C. RANS simulation of ABL flow over complex terrains applying an enhanced k-ε model and wall function formulation: implementation and comparison for Fluent and OpenFOAM. J Wind Eng Ind Aerodyn. 2007;104:360–368.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.