493
Views
6
CrossRef citations to date
0
Altmetric
Articles

The importance of non-normal contributions to velocity gradient tensor dynamics for spatially developing, inhomogeneous, turbulent flows

, ORCID Icon & ORCID Icon
Pages 577-598 | Received 17 Jun 2019, Accepted 15 Oct 2019, Published online: 29 Oct 2019

References

  • Johnson PL, Meneveau C. A closure for Lagrangian velocity gradient evolution in turbulence using recent-deformation mapping of initially Gaussian fields. J Fluid Mech. 2016;804:387–419. doi: 10.1017/jfm.2016.551
  • Chacin JM, Cantwell BJ. Dynamics of a low Reynolds number turbulent boundary layer. J Fluid Mech. 2000;404:87–115. doi: 10.1017/S002211209900720X
  • Meneveau C. Lagrangian dynamics and models of the velocity gradient tensor in turbulent flows. Ann Rev Fluid Mech. 2011;43:219–245. doi: 10.1146/annurev-fluid-122109-160708
  • Li Y, Chevillard L, Meneveau C, et al. Matrix exponential-based closures for the turbulent subgrid-scale stress tensor. Phys Rev E. 2009;79:016305. doi: 10.1103/PhysRevE.79.016305
  • Sagaut P, Cambon C. Homogeneous turbulence dynamics. Cambridge: Cambridge University Press; 2008.
  • Kerr RM. Higher-order derivative correlations and the alignment of small-scale structures in isotropic, numerical turbulence. J Fluid Mech. 1985;153:31–58. doi: 10.1017/S0022112085001136
  • Jimenez J, Wray AA, Saffman PG, et al. The structure of intense vorticity in homogeneous isotropic turbulence. J Fluid Mech. 1993;255:65–90. doi: 10.1017/S0022112093002393
  • Ooi A, Martin J, Soria J, et al. A study of the evolution and characteristics of the invariants of the velocity-gradient tensor in isotropic turbulence. J Fluid Mech. 1999;381:141–174. doi: 10.1017/S0022112098003681
  • Laizet S, Nedić J, Vassilicos C. Influence of the spatial resolution on fine-scale features in DNS of turbulence generated by a single square grid. Int J Comp Fluid Dyn. 2015;29(3–5):286–302. doi: 10.1080/10618562.2015.1058371
  • Ganapathisubramani B, Longmire EK, Marusic I, et al. Dual-plane PIV technique to determine the complete velocity gradient tensor in a turbulent boundary layer. Exp Fluids. 2005;39(2):222–231. doi: 10.1007/s00348-005-1019-z
  • Scarano F. Tomographic PIV: principles and practice. Meas Sci Tech. 2013;24(1):012001. doi: 10.1088/0957-0233/24/1/012001
  • Baum E, Peterson B, Surmann C, et al. Investigation of the 3D flow field in an IC engine using tomographic PIV. Proc Combust Inst. 2013;34(2):2903–2910. doi: 10.1016/j.proci.2012.06.123
  • Gomes-Fernandes R, Ganapathisubramani B, Vassilicos JC. Evolution of the velocity-gradient tensor in a spatially developing turbulent flow. J Fluid Mech. 2014;756:252–292. doi: 10.1017/jfm.2014.452
  • Buxton ORH, Breda M, Chen X. Invariants of the velocity-gradient tensor in a spatially developing inhomogeneous turbulent flow. J Fluid Mech. 2017;817:1–20. doi: 10.1017/jfm.2017.93
  • Taylor GI. Statistical theory of turbulence. Proc R Soc Lond A. 1935;151:421–444. doi: 10.1098/rspa.1935.0158
  • Taylor GI. Production and dissipation of vorticity in a turbulent fluid. Proc R Soc Lond A. 1937;164:15–23.
  • Betchov R. An inequality concerning the production of vorticity in isotropic turbulence. J Fluid Mech. 1956;1:497–504. doi: 10.1017/S0022112056000317
  • Kida S, Tanaka M. Dynamics of vortical structures in a homogeneous shear flow. J Fluid Mech. 1994;274:43–68. doi: 10.1017/S002211209400203X
  • Perry AE, Chong MS. Description of eddying motions and flow patterns using critical-point concepts. Annu Rev Fluid Mech. 1987;19:125. doi: 10.1146/annurev.fl.19.010187.001013
  • Nomura KK, Post GK. The structure and dynamics of vorticity and rate of strain in incompressible homogeneous turbulence. J Fluid Mech. 1998;377:65–97. doi: 10.1017/S0022112098003024
  • Elsinga GE, Marusic I. Universal aspects of small-scale motions in turbulence. J Fluid Mech. 2010;662:514–539. DOI:10.1017/S0022112010003381
  • Wilczek M, Meneveau C. Pressure Hessian and viscous contributions to velocity gradient statistics based on Gaussian random fields. J Fluid Mech. 2014;756:191–225. doi: 10.1017/jfm.2014.367
  • Keylock CJ. The Schur decomposition of the velocity gradient tensor for turbulent flows. J Fluid Mech. 2018;848:876–905. doi: 10.1017/jfm.2018.344
  • Li Y, Perlman E, Wan M, et al. A public turbulence database cluster and applications to study Lagrangian evolution of velocity increments in turbulence. J Turbul. 2008;9:N31. doi: 10.1080/14685240802376389
  • Chong MS, Perry AE, Cantwell BJ. A general classification of three-dimensional flow fields. Phys Fluids A. 1990;2:765–777. doi: 10.1063/1.857730
  • Zhou J, Adrian RJ, Balachandar S, et al. Mechanisms for generating coherent packets of hairpin vortices. J Fluid Mech. 1999;387:353–396. doi: 10.1017/S002211209900467X
  • Chakraborty P, Balachandar S, Adrian RJ. On the relationships between local vortex identification schemes. J Fluid Mech. 2005;535:189–214. doi: 10.1017/S0022112005004726
  • Hunt JCR, Wray AA, Moin P. Eddies, stream, and convergence zones in turbulent flows. Center for Turbulence Research, Stanford University; 1988. (Tech. rep.; CTR-S88).
  • Dubief Y, Delcayre F. On coherent-vortex identification in turbulence. J Turbul. 2000;1:N11. doi: 10.1088/1468-5248/1/1/011
  • Vieillefosse P. Internal motion of a small element of fluid in an inviscid flow. Phys A. 1984;125:150–162. doi: 10.1016/0378-4371(84)90008-6
  • Cantwell BJ. Exact solution of a restricted Euler equation for the velocity gradient tensor. Phys Fluids A. 1992;4(4):782–793. doi: 10.1063/1.858295
  • Berkooz G, Holmes PJ, Lumley J. The proper orthogonal decomposition in the analysis of turbulent flows. Ann Rev Fluid Mech. 2003;25:539–575. doi: 10.1146/annurev.fl.25.010193.002543
  • Schmid PJ. Dynamic mode decomposition of numerical and experimental data. J Fluid Mech. 2010;656:5–28. doi: 10.1017/S0022112010001217
  • Oudheusden B, Scarano F, Van Hinsberg N, et al. Phase-resolved characterization of vortex shedding in the near wake of a square-section cylinder at incidence. Exp Fluids. 2005;39:86–98. doi: 10.1007/s00348-005-0985-5
  • Peltier Y, Erpicum S, Archambeau P, et al. Meandering jets in shallow rectangular reservoirs: POD analysis and identification of coherent structures. Exp Fluids. 2014;55(6):1740. doi: 10.1007/s00348-014-1740-6
  • Higham JE, Brevis W, Keylock CJ, et al. Using modal decompositions to explain the sudden expansion of the mixing layer in the wake of a groyne in a shallow flow. Adv Water Resour. 2017;107:451–459. doi: 10.1016/j.advwatres.2017.05.010
  • Schur I. On the characteristic roots of a linear substitution with an application to the theory of integral equations (in German). Math Ann. 1909;66:488–510. doi: 10.1007/BF01450045
  • Keylock CJ. Synthetic velocity gradient tensors and the identification of significant aspects of the structure of turbulence. Phys Rev Fluids. 2017;2(8):084607. doi: 10.1103/PhysRevFluids.2.084607
  • Henrici P. Bounds for iterates, inverses, spectral variation and fields of values of non-normal matrices. Numer Math. 1962;4:24–40. doi: 10.1007/BF01386294
  • Keylock CJ. Turbulence at the Lee bound: maximally non-normal vortex filaments and the decay of a local dissipation rate. J Fluid Mech. 2019;881:283–312. doi: 10.1017/jfm.2019.779
  • Ohkitani K, Kishiba S. Nonlocal nature of vortex stretching in an inviscid fluid. Phys Fluids. 1995;7(2):411–421. doi: 10.1063/1.868638
  • De Silva CM, Philip J, Marusic I. Minimization of divergence error in volumetric velocity measurements and implications for turbulence statistics. Exp Fluids. 2013;54(7):1–17. doi: 10.1007/s00348-013-1557-8
  • Breda M, Buxton ORH. Effects of multiscale geometry on the large-scale coherent structures of an axisymmetric turbulent jet. J Vis. 2018;21(4):525–532. DOI:10.1007/s12650-018-0479-1
  • Breda M, Buxton O. Behaviour of small-scale turbulence in the turbulent/non-turbulent interface region of developing turbulent jets. J Fluid Mech. 2019;879:187–216. doi: 10.1017/jfm.2019.676
  • Buxton ORH, Laizet S, Ganapathisubramani B. The interaction between strain-rate and rotation in shear flow turbulence from inertial range to dissipative length scales. Phys Fluids. 2011;23:061704. doi: 10.1063/1.3599080
  • Obligado M, Dairay T, Vassilicos J. Non-equilibrium scaling of turbulent wakes. Phys Rev Fluids. 2016;1:044409. doi: 10.1103/PhysRevFluids.1.044409
  • Cafiero G, Vassilicos JC. Non-equilibrium turbulence scalings and self-similarity in turbulent planar jets. Proc R Soc A. 2019;475:20190038. doi: 10.1098/rspa.2019.0038
  • Hussain AKMF, Reynolds WC. The mechanics of an organized wave in turbulent shear flow. J Fluid Mech. 1970;41(2):241–258. DOI:10.1017/S0022112070000605
  • Paul I, Papadakis G, Vassilicos JC. Genesis and evolution of velocity gradients in near-field spatially developing turbulence. J Fluid Mech. 2017;815:295–332. doi: 10.1017/jfm.2017.54
  • Tsinober A. Vortex stretching versus production of strain/dissipation. In: Hunt JCR, Vassilicos JC, editors. Turbulence structure and vortex dynamics. Cambridge: Cambridge University Press; 2001; p. 164–191.
  • Horiuti K. A classification method for vortex sheet and tube structures in turbulent flows. Phys Fluids. 2001;13:3756–3774. doi: 10.1063/1.1410981
  • Kawahara G. Energy dissipation in spiral vortex layers wrapped around a straight vortex tube. Phys Fluids. 2005;17:055111. doi: 10.1063/1.1897011
  • Ohkitani K. Numerical study of comparison of vorticity and passive vectors in turbulence and inviscid flows. Phys Rev E. 2002;65(4):046304. doi: 10.1103/PhysRevE.65.046304
  • Horiuti K. Roles of non-aligned eigenvectors of strain-rate and subgrid-scale stress tensors in turbulence generation. J Fluid Mech. 2003;491:65–100. doi: 10.1017/S0022112003005299
  • Tao B, Katz J, Meneveau C. Statistical geometry of subgrid-scale stresses determined from holographic particle image velocimetry measurements. J Fluid Mech. 2002;457:35–78. doi: 10.1017/S0022112001007443

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.