296
Views
10
CrossRef citations to date
0
Altmetric
Articles

Numerical prediction of interaction between turbulence structures and vortex cavitation

ORCID Icon &
Pages 599-625 | Received 23 Jul 2019, Accepted 16 Oct 2019, Published online: 03 Nov 2019

References

  • Daily JW, Johnson VE. Turbulence and boundary-layer effects on cavitation inception from gas nuclei. Trans ASME. 1956;78:1695–1706.
  • Arndt REA, Ippen AT. Rough surface effects on cavitation inception. J Basic Engin. 1968;90(2):249–261. doi: 10.1115/1.3605086
  • Luo X, Ji B, Tsujimoto Y. A review of cavitation in hydraulic machinery. J Hydrodyn. 2016;28(3):335–358. doi: 10.1016/S1001-6058(16)60638-8
  • Katz J. Cavitation phenomena within regions of flow separation. J Fluid Mech. 1984;140:397–436. doi: 10.1017/S0022112084000665
  • Katz J, O'Hern TJ. Cavitation in large scale shear flows. J Fluids Eng. 1986;108(3):373–376. doi: 10.1115/1.3242589
  • O'Hern TJ. An experimental investigation of turbulent shear flow cavitation. J Fluid Mech. 1990;215:365–391. doi: 10.1017/S0022112090002683
  • Belahadji B, Franc JP, Michel JM. Cavitation in the rotational structures of a turbulent wake. J Fluid Mech. 1995;287:383–403. doi: 10.1017/S0022112095000991
  • Arndt REA. Cavitation in vortical flows. Annu Rev Fluid Mech. 2002;34:143–175. doi: 10.1146/annurev.fluid.34.082301.114957
  • Choi J, Hsiao CT, Chahine G, et al. Growth, oscillation and collapse of vortex cavitation bubbles. J Fluid Mech. 2009;624:255–279. doi: 10.1017/S0022112008005430
  • Iyer CO, Ceccio SL. The influence of developed cavitation on the flow of a turbulent shear layer. Phys Fluids. 2002;14(10):3414–3431. doi: 10.1063/1.1501541
  • Plesset MS, Chapman RB. Collapse of an initially spherical vapour cavity in the neighbourhood of a solid boundary. J Fluid Mech. 1971;47(2):283–290. doi: 10.1017/S0022112071001058
  • Ochiai N, Iga Y, Nohmi M, et al. Numerical analysis of nonspherical bubble collapse behavior and induced impulsive pressure during first and second collapses near the wall boundary. J Fluid Sci Tech. 2011;6(6):860–874. doi: 10.1299/jfst.6.860
  • Nicoud F. Conservative high-order finite-difference schemes for low-Mach number flows. J Comput Phys. 2000;158(1):71–97. doi: 10.1006/jcph.1999.6408
  • Ohta T, Sakai H, Okabayashi K, et al. Investigation of interaction between vortices and cavitation in a turbulent shear layer. J Fluid Sci Tech. 2011;6(6):1021–1035. doi: 10.1299/jfst.6.1021
  • Okabayashi K, Kajishima T. Modeling of the subgrid-scale pressure distribution in turbulent mixing layer. J Fluid Sci Tech. 2011;6(1):73–84. doi: 10.1299/jfst.6.73
  • Huang B, Zhao Y, Wang G. Large eddy simulation of turbulent vortex–cavitation interactions in transient sheet/cloud cavitating flows. Comput Fluids. 2014;92:113–124. doi: 10.1016/j.compfluid.2013.12.024
  • Gnanaskandan A, Mahesh K. A numerical method to simulate turbulent cavitating flows. Int J Multiphase Flow. 2015;70:22–34. doi: 10.1016/j.ijmultiphaseflow.2014.11.009
  • Ji B, Luo X, Arndt REA, et al. Numerical simulation of three dimensional cavitation shedding dynamics with special emphasis on cavitation–vortex interaction. Ocean Engin. 2014;87:64–77. doi: 10.1016/j.oceaneng.2014.05.005
  • Andriotis A, Gavaises M, Arcoumanis C. Vortex flow and cavitation in diesel injector nozzles. J Fluid Mech. 2008;610:195–215. doi: 10.1017/S0022112008002668
  • Okuda K, Ikohagi T. Numerical simulation of collapsing behavior of bubble clouds. Trans JSME Ser B. 1996;62(603):3792–3797. Japanese. doi: 10.1299/kikaib.62.3792
  • Iga Y, Nohmi M, Goto A, et al. Numerical study of sheet cavitation breakoff phenomenon on a cascade hydrofoil. J Fluids Eng. 2003;125:643–651. doi: 10.1115/1.1596239
  • Ochiai N, Iga Y, Nohmi M, et al. Numerical prediction of cavitation erosion intensity in cavitating flows around a Clark Y 11.7% hydrofoil. J Fluid Sci Tech. 2010;5:416–431. doi: 10.1299/jfst.5.416
  • Chen Y, Heister SD. Two-phase modeling of cavitated flows. Comput Fluids. 1995;24(7):799–809. doi: 10.1016/0045-7930(95)00017-7
  • Ohta T, Kajishima T, Mizobata K, et al. Influence of density fluctuation on DNS of turbulent channel flow in the presence of temperature stratification. Flow Turbul Combust. 2012;89(3):435–448. doi: 10.1007/s10494-012-9404-1
  • Yabe T, Wang PY. Unified numerical procedure for compressible and incompressible fluid. J Phys Soc Japan. 1991;60:2105–2108. doi: 10.1143/JPSJ.60.2105
  • Yabe T, Xiao F, Utsumi T. The constrained interpolation profile method for multiphase analysis. J Comput Phys. 2001;169(2):556–593. doi: 10.1006/jcph.2000.6625
  • Poinsot TJ, Lele SK. Boundary conditions for direct simulations of compressible viscous flows. J Comput Phys. 1992;101(1):104–129. doi: 10.1016/0021-9991(92)90046-2
  • Dennis DJC, Nickels TB. On the limitations of taylor's hypothesis in constructing long structures in a turbulent boundary layer. J Fluid Mech. 2008;614:197–206. doi: 10.1017/S0022112008003352
  • Coles DE. The turbulent boundary layer in a compressible fluid. RAND Corporation; 1962. R–403–PR.
  • Coles DE. The turbulent boundary layer in a compressible fluid. Phys Fluids. 1964;7(9):1403–1423. doi: 10.1063/1.1711395
  • Spalart PR. Direct simulation of a turbulent boundary layer up to reθ=1410. J Fluid Mech. 1988;187:61–98. doi: 10.1017/S0022112088000345
  • Schlatter P, Örlü R. Assessment of direct numerical simulation data of turbulent boundary layers. J Fluid Mech. 2010;659:116–126. doi: 10.1017/S0022112010003113
  • Iwamoto K, Suzuki Y, Kasagi N. Reynolds number effect on wall turbulence: toward effective feedback control. Int J Heat Fluid Flow. 2002;23:678–689. doi: 10.1016/S0142-727X(02)00164-9
  • Mansour NN, Kim J, Moin P. Reynolds-stress and dissipation-rate budgets in a turbulent channel flow. J Fluid Mech. 1988;194:15–44. doi: 10.1017/S0022112088002885
  • Moser RD, Kim J, Mansour NN. Direct numerical simulation of turbulent channel flow up to reτ=590. Phys Fluids. 1999;11(4):943–945. doi: 10.1063/1.869966
  • So RMC, Gatski TB, Sommer TP. Morkovin hypothesis and the modeling of wall-bounded compressible turbulent flows. AIAA J. 1998;36(9):1583–1592. doi: 10.2514/2.584

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.