317
Views
2
CrossRef citations to date
0
Altmetric
Articles

Actuator line method applied to grid turbulence generation for large-Eddy simulations

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 407-433 | Received 03 Mar 2020, Accepted 21 Jul 2020, Published online: 13 Aug 2020

References

  • Slotnick J, Khodadoust A, Alonso J, et al. Cfd vision 2030 study: a path to revolutionary computational aerosciences: Nasa. tech. rep. NASA; 2014.
  • Vita G, Hemida H, Andrianne T, et al. Generating atmospheric turbulence using passive grids in an expansion test section of a wind tunnel. J Wind Eng Indus Aerodyn. 2018;178:91–104.
  • Hinze J. Turbulence: McGraw-Hill Series in Mechanical Engineering. New York: McGraw-Hill; 1975.
  • Batchelor GK. The theory of homogeneous turbulence. Cambridge: Cambridge University Press; 1953.
  • Roach P. The generation of nearly isotropic turbulence by means of grids. Int J Heat Fluid Flow. 1987;8(2):82–92.
  • Hurst D, Vassilicos JC. Scalings and decay of fractal-generated turbulence. Phys Fluids. 2007;19(3):035–103.
  • Mazzi B, Vassilicos J. Fractal-generated turbulence. J Fluid Mech. 03 2004;502:65–87.
  • Laizet S, Vassilicos JC. Dns of fractal-generated turbulence. Flow Turbul Combust. 2011;87(4):673–705.
  • Dhamankar NS, Blaisdell GA, Lyrintzis AS. Overview of turbulent inflow boundary conditions for large-eddy simulations. AIAA J. 2018;56(4):1317–1334.
  • Tabor G, Baba-Ahmadi M. Inlet conditions for large eddy simulation: a review. Comput Fluids. 2010;39(4):553–567.
  • Keating A, Piomelli U, Balaras E, et al. A priori and a posteriori tests of inflow conditions for large-eddy simulation. Phys Fluids. 2004;16(12):4696–4712.
  • Davidson L. Hybrid les-rans: inlet boundary conditions for flows with recirculation. In: Peng S-H, Haase W, editors. Advances in hybrid RANS-LES modelling. Berlin: Springer; 2008. p. 55–66.
  • Klein M, Sadiki A, Janicka J. A digital filter based generation of inflow data for spatially developing direct numerical or large eddy simulations. J Comput Phys. Apr. 2003;186:652–665.
  • Lund TS, Wu X, Squires KD. Generation of turbulent inflow data for spatially-developing boundary layer simulations. J Comput Phys. 1998;140(2):233–258.
  • Mann J. The spatial structure of neutral atmospheric surface-layer turbulence. J Fluid Mech. 1994;273:141–168.
  • Munters W, Meneveau C, Meyers J. Turbulent inflow precursor method with time-varying direction for large-eddy simulations and applications to wind farms. Boundary Layer Meteorol. 2016;159(2):305–328.
  • Wu X. Inflow turbulence generation methods. Annu Rev Fluid Mech. 2016;49(1):23–49.
  • Arolla SK. Inflow turbulence generation for eddy-resolving simulations of turbomachinery flows. J Fluids Eng. 2015;138(3):031201.
  • Sillero JA, Jiménez J, Moser RD. One-point statistics for turbulent wall-bounded flows at Reynolds numbers up to δ+=2000. Phys Fluids. 2013;25(10):00–00.
  • Peskin CS. Flow patterns around heart valves: a numerical method. J Comput Phys. 1972;10(2):252–271.
  • Foti D, Yang X, Campagnolo F, et al. On the use of spires for generating inflow conditions with energetic coherent structures in large eddy simulation. J Turbulence. 2017;18(7):611–633.
  • Blackmore T, Batten WM, Bahaj AS. Inlet grid-generated turbulence for large-eddy simulations. Int J Comut Fluid Dyn. 2013;27(6–7):307–315.
  • Sørensen J, Shen W. Numerical modeling of wind turbine wakes. J Fluids Eng. 2002;124(2):393–399.
  • Nicoud F, Toda HB, Cabrit O, et al. Using singular values to build a subgrid-scale model for large eddy simulations. Phys Fluids. 2011;23(8):085–106.
  • Peet Y, Fischer P, Conzelmann G, et al. Actuator line aerodynamics model with spectral elements. 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition; 2013. p. 1210.
  • Glauert H. Airplane propellers. In: Durand WF, editor. Aerodynamic theory. Vol. IV. 1935. p. 169–360.
  • Benard P, Viré A, Moureau V, et al. Large-eddy simulation of wind turbines wakes including geometrical effects. Comput Fluids. 2018;173:133–139.
  • Troldborg N, Sørensen JN, Mikkelsen R. Numerical simulations of wake characteristics of a wind turbine in uniform inflow. Wind Energy. 2010;13:86–99.
  • Martínez-Tossas LA, Churchfield MJ, Meneveau C. Optimal smoothing length scale for actuator line models of wind turbine blades based on Gaussian body force distribution. Wind Energ. 2017;0:00–00.
  • Moureau V, Domingo P, Vervisch L. Design of a massively parallel cfd code for complex geometries. Comptes Rendus Mécanique. 2011;339(2–3):141–148.
  • Kraushaar M. Application of the compressible and low-Mach number approaches to large-Eddy simulation of turbulent flows in aero-engines [PhD thesis]. INPT; 2011.
  • Chorin AJ. Numerical solution of the Navier-Stokes equations. Math Comp. 2013;22:745–762.
  • Malandain M, Maheu N, Moureau V. Optimization of the deflated conjugate gradient algorithm for the solving of elliptic equations on massively parallel machines. J Comput Phys. 2013;238:32–47.
  • Moureau V, Domingo P, Vervisch L. From large-eddy simulation to direct numerical simulation of a lean premixed swirl flame: filtered laminar flame-pdf modeling. Combust Flame. 2011;158(7):1340–1357.
  • Lesage F, Gartshore L. A method of reducing drag and fluctuating side force on bluff bodies. J Wind Eng Indust Aerodynamics. 1987;25:229–245.
  • Knisely C. Strouhal numbers of rectangular cylinders at incidence: a review and new data. J Fluids Struct. 1990;4:371–393.
  • Vickery B. Fluctuating lift and drag on a long cylinder of square cross-section in a smooth and in a turbulent stream. J Fluid Mech. 1966;25(3):481–494.
  • Fukumoto H, Aono H, Tanaka M. Significance of computational spanwise domain length on LES for the flowfield with large vortex structure. 54th AIAA Aerospace Sci Meeting. 2016: 1–16. https://doi.org/10.2514/6.2016-0336.
  • Duprat C, Balarac G, Métais O, et al. A wall-layer model for large-eddy simulations of turbulent flows with/out pressure gradient. Physics of Fluids. 2011;23(1):00–00.
  • Williamson CH, Roshko A. Vortex formation in the wake of an oscillating cylinder. J Fluids Struct. 1988;2(4):355–381.
  • Guedot L, Lartigue G, Moureau V. Design of high-order implicit filters on unstructured grids for the identification of large-scale features in large-eddy simulations. Direct Large-Eddy Simul IX. 2015;20:81–87.
  • Legrand N, Lartigue G, Moureau V. A multi-grid framework for the extraction of large-scale vortices in large-Eddy simulation. J Comput Phys. 2017;349:528–560.
  • Jones GW, Cincotta JJ, Walker WR. Aerodynamic forces on a stationary and oscillating circular cylinder at high Reynolds numbers. NASA technichal report; 1969.
  • Fiabane L, Gohlke M, Cadot O. Characterization of flow contributions to drag and lift of a circular cylinder using a volume expression of the fluid force. European J Mech – B/Fluids. 2011;30(3):311–315.
  • Zhao J, Hourigan K, Thompson MC. Flow-induced vibration of D-section cylinders: an afterbody is not essential for vortex-induced vibration. J Fluid Mech. 2018;851:317–343.
  • Mühle F, Schottler J, Bartl J, et al. Blind test comparison on the wake behind a yawed wind turbine. Wind Energy Sci. 2018;3(2):883–903.
  • Sætran L, Mühle F, Bartl J, et al. Invitation to the 2017 ‘blind test 5’ workshop the wake behind a yawed wind turbine; 2018. Available from: http://doi.org/10.5281/zenodo.1218555.
  • Alam MM, Zhou Y, Wang X. The wake of two side-by-side square cylinders. J Fluid Mech. 2011;669:432–471.
  • Martinuzzi R, Bailey S, Kopp G. Influence of wall proximity on vortex shedding from a square cylinder. Exp Fluids. 2003;34(5):585–596.
  • Chatterjee D, Biswas G. Dynamic behavior of flow around rows of square cylinders kept in staggered arrangement. J Wind Eng Indust Aerodynamics. 2015;136:1–11.
  • Passot T, Pouquet A. Numerical simulation of compressible homogeneous flows in the turbulent regime. J Fluid Mech. 1987;181:441–466.
  • Ciri U, Petrolo G, Salvetti MV, et al. Large-eddy simulations of two in-line turbines in a wind tunnel with different inflow conditions. Energies. 2017;10:1–23.
  • Lumley JL, Newman GR. The return to isotropy of homogeneous turbulence. J Fluid Mech. 1977;82(1):161–178.
  • Banerjee S, Krahl R, Durst F, et al. Presentation of anisotropy properties of turbulence, invariants versus eigenvalue approaches. J Turbulence. 2007;8:1–27.
  • Qu X, Zhang Y, Lu X, et al. Unsteady effects of periodic wake passing frequency on aerodynamic performance of ultra-high-lift low pressure turbine cascades. Phys Fluids. 2019;31(9):094–102.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.