237
Views
2
CrossRef citations to date
0
Altmetric
Research Article

A study of the influence of coflow on flame dynamics in impinging jet diffusion flames

, , , , &
Pages 461-480 | Received 24 Sep 2020, Accepted 08 Apr 2021, Published online: 26 Apr 2021

References

  • Steinberg AM, Driscoll JF, Ceccio SL. Temporal evolution of flame stretch due to turbulence and the hydrodynamic instability. Proc Combust Inst. 2009;32(2):1713–1721.
  • Driscoll J. Turbulent premixed combustion: flamelet structure and its effect on turbulent burning velocities. Prog Energy Combust. 2008;34(1):91–134.
  • An Q, Steinberg AM. The role of strain rate, local extinction, and hydrodynamic instability on transition between attached and lifted swirl flames. Combust Flame. 2019;199:267–278.
  • Yanez J, Kuznetsov M. An analysis of flame instabilities for hydrogen-air mixtures based on Sivashinsky equation. Phys Lett A. 2016;380(33):2549–2560.
  • Robert E, Monkewitz PA. Thermal-diffusive instabilities in unstretched, planar diffusion flames. Combust Flame. 2012;159(3):1228–1238.
  • Jiang X, Luo KH. Combustion-induced buoyancy effects of an axisymmetric reactive plume. Proc Combust Inst. 2000;28(2):1989–1995.
  • Gotoda H, Asano Y, Chuah KH, et al. Nonlinear analysis on dynamic behavior of buoyancy-induced flame oscillation under swirling flow. Int J Heat Mass Trans. 2009;52(23-24):5423–5432.
  • Jiang JY, Wu TQ, Li HX, et al. Analysis of turbulent transport characteristic in hydrogen diffusion flames using direct numerical simulation. Nume Heat Tr A-Appl. 2020;78(4):125–139.
  • Ma MC, Talei M, Sandberg RD. Direct numerical simulation of turbulent premixed jet flames: influence of inflow boundary conditions. Combust Flame. 2020;213:240–254.
  • Luis FMGL, Loreto P, Julien S, et al. Experimental investigation of hydrous ethanol/air flame front instabilities at elevated temperature and pressures. Fuel. 2021;287(1):119555.
  • Li L, Zhao D, Yang XL. Effect of entropy waves on transient energy growth of flow disturbances in triggering thermoacoustic instability. Int J Heat Mass Trans. 2016;99:219–233.
  • Kim JH, Kim SG, Lee KM, et al. An experimental study on thermoacoustic instabilities in syngas-air premixed impinging jet flames. Fuel. 2019;257:115921.
  • Dubey AK, Koyama Y, Hashimoto N, et al. Exploring a critical diameter for thermo-acoustic instability of downward propagating flames in tubes. Proc Combust Inst. 2020: 1–10.
  • Bernier D, Lacas F, Candel S. Instability mechanisms in a premixed prevaporized combustor. J Propuls Power. 2004;20(4):648–656.
  • Zhang Z, Zhao D, Han N, et al. Control of combustion instability with a tunable Helmholtz resonator. Aerosp Sci Technol. 2015;41:55–62.
  • Taamallah S, LaBry ZA, Shanbhogue SJ, et al. Thermo-acoustic instabilities in lean premixed swirl-stabilized combustion and their link to acoustically coupled and decoupled flame macrostructures. Proc Combust Inst. 2015;35(3):3273–3282.
  • Dhanuka SK, Temme JE, Driscoll JF, et al. Vortex-shedding and mixing layer effects on periodic flashback in a lean premixed prevaporized gas turbine combustor. Proc Combust Inst. 2009;32(2):2901–2908.
  • Hsieh WD, Lin TH. Methane flame stability in a jet impinging onto a wall. Energy Convers Manage. 2005;46(5):727–739.
  • Hu ZQ, Zhang X. Experimental study on flame stability of biogas/hydrogen combustion. Int J Hydrogen Energy. 2019;44(11):5607–5614.
  • Egolfopoulos FN, Zhang H, Zhang Z. Wall effects on the propagation and extinction of steady, strained, laminar premixed flames. Combust Flame. 1997;109:237–252.
  • Liang X, Li X, Fu D, et al. Effects of wall temperature on boundary layer stability over a blunt cone at mach 7.99. Comput Fluids. 2010;39(2):359–371.
  • Yahagi Y, Sekiguti M, Suzuki K. Flow structure and flame stability in a micro can combustor with a baffle plate. Appl Therm Eng. 2007;27(4):788–794.
  • Adamczyk WP, Isaac B, Parra-Alvarez J, et al. Application of LES-CFD for predicting pulverized-coal working conditions after installation of NOx control system. Energy. 2018;160(1):693–709.
  • Bulut T, Kahila H, Kaario O, et al. Large-eddy simulation of dual-fuel spray ignition at different ambient temperatures. Combust Flame. 2020;215:51–65.
  • Li J, Ma K, Lv X, et al. Combustion characteristics of solid propellants under high-temperature dense-particle erosion conditions. Combust Flame. 2019;204:49–57.
  • Zhang ZW, Li XS, Zhang LQ, et al. Effect of H2O/CO2 mixture on heat transfer characteristics of pulverized coal MILD-oxy combustion. Fuel Process Technol. 2019;184:27–35.
  • Tu YJ, Liu H, Su K, et al. Numerical study of H2O addition effects on pulverized coal oxy-MILD combustion. Fuel Process Technol. 2015;138:252–262.
  • Badra J, Masri AR, Zhou C, et al. An experimental and numerical study of surface chemical interactions in the combustion of propylene over platinum. Combust Flame. 2013;160(2):473–485.
  • Le VM, Marchand A, Verma S, et al. Simulations of a turbulent line fire with a steady flamelet combustion model coupled with models for non-local and local gas radiation effects. Fire Safety J. 2019;106:105–113.
  • Smith GP, Golden DM, Frenklach M, et al. GRI-Mech 3.0. http://www.me.berkeley.edu/gri_mech/1999.
  • Perakis N, Haidn OJ. Wall heat transfer prediction in CH4/O2 and H2/O2 rocket thrust chambers using a non-adiabatic flamelet model. Acta Astronaut. 2020;174:254–269.
  • Wang K, Li F, Zou P, et al. Effect of the fuel-air flow velocity on heat release rate of swirling non-premixed methane flames. Aerosp Sci Technol. 2019;95:105465.
  • Phares DJ, Smedley GT, Flagan R. The wall shear stress produced by the normal impingement of a jet on a flat surface. J Fluid Mech. 2000;418:351–375.
  • Murugan S, Huang RF, Hsu CM. Effect of annular flow pulsation on flow and mixing characteristics of double concentric jets at low central jet reynolds number. Int J Mech Sci. 2020;186:105907.
  • Xu H, Liu F, Sun S, et al. Influence of preheating and burner geometry on modeling the attachment of laminar coflow CH4/air diffusion flames. Combust Flame. 2018;191:381–393.
  • Gao J, Hossain A, Nakamura Y. Flame base structures of micro-jet hydrogen/methane diffusion flames. P Combust Inst. 2017;36(3):4209–4216.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.