250
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Non-isothermal flow past a heated circular cylinder in subcritical regime: a numerical investigation based on large-eddy simulation

& ORCID Icon
Pages 352-381 | Received 08 Dec 2021, Accepted 25 May 2022, Published online: 06 Jun 2022

References

  • Gallis MA, Torczynski JR. Effect of slip on vortex shedding from a circular cylinder in a gas flow. Phys Rev Fluids. 2021 Jun;6:063402.
  • Norberg C. Effects of Reynolds number and low-intensity freestream turbulence on the flow around a circular cylinder. Department of Applied Thermodynamics and Fluid Mechanics, Chalmer University of Technology; 1987 May.
  • Lourenco L, Shih C. Characteristics of the plane turbulent near wake of a circular cylinder, a particle image velocimetry study. Published in paper ‘Numerical experiments on the flow past a circular cylinder at sub-critical Reynolds number’; 1993.
  • Norberg C. An experimental investigation of the flow around a circular cylinder: influence of aspect ratio. J Fluid Mech. 1994 Jan;258:287–316.
  • Ong L, Wallace J. The velocity field of the turbulent very near wake of a circular cylinder. Exp Fluids. 1996 Apr;20(6):441–453.
  • Norberg C. Published in paper “Numerical studies of flow over a circular cylinder at ReD=3900” by Kravchenko and Moin. 2000.
  • Published in paper ‘Dynamics and low-dimensionality of a turbulent near wake’ by X Ma; 2000.
  • Nakamura H, Igarashi T. Unsteady heat transfer from a circular cylinder for Reynolds numbers from 3000 to 15,000. Int J Heat Fluid Flow. 2004 Oct;25(5):741–748.
  • Dong S, Karniadakis GE, Ekmekci A, et al. A combined direct numerical simulation-particle image velocimetry study of the turbulent near wake. J Fluid Mech. 2006 Dec;569:185–207.
  • Parnaudeau P, Carlier J, Heitz D, et al. Experimental and numerical studies of the flow over a circular cylinder at Reynolds number 3900. Phys Fluids. 2008 Aug;20(8):085101.
  • Molochnikov VM, Mikheev NI, Mikheev AN, et al. SIV measurements of flow structure in the near wake of a circular cylinder at Re = 3900. Fluid Dyn Res. 2019 Oct;51(5):055505.
  • Ma X, Karamanos GS, Karniadakis GE. Dynamics and low-dimensionality of a turbulent near wake. J Fluid Mech. 2000 May;410:29–65.
  • Rai M. Towards direct numerical simulations of turbulent wakes. In: 46th AIAA Aerospace Sciences Meeting and Exhibit; Reno, Nevada. American Institute of Aeronautics and Astronautics; 2008.
  • Rai MM. A computational investigation of the instability of the detached shear layers in the wake of a circular cylinder. J Fluid Mech. 2010 Sep;659:375–404.
  • Wissink JG, Rodi W. Numerical study of the near wake of a circular cylinder. Int J Heat Fluid Flow. 2008 Aug;29(4):1060–1070.
  • Lehmkuhl O, Rodríguez I, Borrell R, et al. Low-frequency unsteadiness in the vortex formation region of a circular cylinder. Phys Fluids. 2013 Aug;25(8):085109.
  • Yan T, Wang R, Bao Y, et al. Modification of turbulent wake characteristics by two small control cylinders at a subcritical Reynolds number. Phys Fluids. 2018 Oct;30(10):105106.
  • Beaudan P, Moin P. Numerical experiments on the flow past a circular cylinder at sub-critical Reynolds number. Department of Mechanical Engineering, Stanford University; 1994. (Report No TF-62).
  • Mittal R, Moin P. Suitability of upwind-biased finite difference schemes for large-eddy simulation of turbulent flows. AIAA J. 1997 Aug;35(8):1415–1417.
  • Kravchenko AG, Moin P. Numerical studies of flow over a circular cylinder at ReD=3900. Phys Fluids. 2000 Jan;12(2):403–417.
  • Breuer M. Large eddy simulation of the subcritical flow past a circular cylinder: numerical and modeling aspects. Int J Numer Methods Fluids. 1998;28(9):1281–1302.
  • Franke J, Frank W. Large eddy simulation of the flow past a circular cylinder at ReD=3900. J Wind Eng Ind Aerodyn. 2002 Oct;90(10):1191–1206.
  • Mani A, Moin P, Wang M. Computational study of optical distortions by separated shear layers and turbulent wakes. J Fluid Mech. 2009 Apr;625:273–298.
  • Meyer M, Hickel S, Adams NA. Assessment of implicit large-eddy simulation with a conservative immersed interface method for turbulent cylinder flow. Int J Heat Fluid Flow. 2010 Jun;31(3):368–377.
  • Afgan I, Kahil Y, Benhamadouche S, et al. Large eddy simulation of the flow around single and two side-by-side cylinders at subcritical Reynolds numbers. Phys Fluids. 2011 Jul;23(7):075101.
  • Wornom S, Ouvrard H, Salvetti MV, et al. Variational multiscale large-eddy simulations of the flow past a circular cylinder: Reynolds number effects. Comput Fluids. 2011 Aug;47(1):44–50.
  • Lysenko DA, Ertesvag IS, Rian KE. Large-eddy simulation of the flow over a circular cylinder at Reynolds number 3900 using the openfoam toolbox. Flow Turbul Combust. 2012 Dec;89(4):491–518.
  • Chen H, Li Z, Zhang Y. U or V shape: dissipation effects on cylinder flow implicit large-eddy simulation. AIAA J. 2017 Feb;55(2):459–473.
  • Jogee S, Prasad BVSSS, Anupindi K. Large-eddy simulation of non-isothermal flow over a circular cylinder. Int J Heat Mass Transf. 2020 Apr;151:119426.
  • Tian G, Xiao Z. New insight on large-eddy simulation of flow past a circular cylinder at subcritical Reynolds number 3900. AIP Adv. 2020 Aug;10(8):085321.
  • Sircar A, Kimber M, Rokkam S, et al. Turbulent flow and heat flux analysis from validated large eddy simulations of flow past a heated cylinder in the near wake region. Phys Fluids. 2020 Dec;32(12):125119.
  • Jiang H, Cheng L. Large-eddy simulation of flow past a circular cylinder for Reynolds numbers 400 to 3900. Phys Fluids. 2021 Mar;33(3):034119.
  • Tian C, Jiang F, Pettersen B, et al. Vortex system around a step cylinder in a turbulent flow field. Phys Fluids. 2021 Apr;33(4):045112.
  • West GS, Apelt CJ. The effects of tunnel blockage and aspect ratio on the mean flow past a circular cylinder with Reynolds numbers between 104 and 105. J Fluid Mech. 1982 Jan;114:361–377.
  • Szepessy S, Bearman PW. Aspect ratio and end plate effects on vortex shedding from a circular cylinder. J Fluid Mech. 1992 Jan;234:191–217.
  • Kim SE, Nakamura H. Large eddy simulation of turbulent heat transfer around a circular cylinder in crossflow. In: Volume 2: Fora, Parts A and B; Jan.; San Diego, CA, USA; ASMEDC; 2007. p. 233–238.
  • Salkhordeh S, Jana A, Kimber M. Large eddy simulation of non-isothermal turbulent flow past a circular cylinder. In: 16th International Topical Meeting on Nuclear Reactor Thermal Hydraulics; 2015. p. 245–251.
  • Boussinesq J. Essai sur la théorie des eaux courantes; 1877.
  • Smagorinsky J. General circulation experiments with the primitive equations. Mon Weather Rev. 1963 Mar;91(3):99–164.
  • Lilly DK. On the application of the eddy viscosity concept in the inertial sub-range of turbulence. NCAR Manuscript No 123. 1966.
  • Deardorff JW. Stratocumulus-capped mixed layers derived from a three-dimensional model. Boundary Layer Meteorol. 1980 Jun;18(4):495–527.
  • Germano M, Piomelli U, Moin P, et al. A dynamic subgrid-scale eddy viscosity model. Phys Fluids A: Fluid Dyn. 1991 Jul;3(7):1760–1765.
  • Lilly DK. A proposed modification of the Germano subgrid-scale closure method. Phys Fluids A: Fluid Dyn. 1992 Mar;4(3):633–635.
  • Zang Y, Street RL, Koseff JR. A dynamic mixed subgrid-scale model and its application to turbulent recirculating flows. Phys Fluids A: Fluid Dyn. 1993 Dec;5(12):3186–3196.
  • Calmet I, Magnaudet J. Large-eddy simulation of high-Schmidt number mass transfer in a turbulent channel flow. Phys Fluids. 1997 Feb;9(2):438–455.
  • Nicoud F, Ducros F. Subgrid-scale stress modelling based on the square of the velocity gradient tensor. Flow Turbul Combust. 1999 Sep;62(3):183–200.
  • Park N, Lee S, Lee J, et al. A dynamic subgrid-scale eddy viscosity model with a global model coefficient. Phys Fluids. 2006 Dec;18(12):125109.
  • Tian G, Conan B, Calmet I. Turbulence-kinetic-energy budget in the urban-like boundary layer using large-eddy simulation. Boundary Layer Meteorol. 2021 Feb;178(2):201–223.
  • Piomelli U, Cabot WH, Moin P, et al. Subgrid-scale backscatter in turbulent and transitional flows. Phys Fluids A: Fluid Dyn. 1991 Jul;3(7):1766–1771.
  • Schumann U. Subgrid scale model for finite difference simulations of turbulent flows in plane channels and annuli. J Comput Phys. 1975;18(4):376–404.
  • Menon S, Yeung PK, Kim WW. Effect of subgrid models on the computed inter-scale energy transfer in isotropic turbulence. J Fluid Mech. 1996;25:165–180.
  • Yoshizawa A. Statistical theory for compressible turbulent shear flows, with the application to subgrid modeling. Phys Fluids. 1986;29(7):2152.
  • Van Driest ER. On turbulent flow near a wall. J Aeronaut Sci. 1956 Nov;23(11):1007–1011.
  • Weller HG, Tabor G, Jasak H, et al. A tensorial approach to computational continuum mechanics using object-oriented techniques. Comput Phys. 1998 Nov;12(6):620–631.
  • Issa RI. Solution of the implicitly discretised fluid flow equations by operator-splitting. J Comput Phys. 1986 Jan;62(1):40–65.
  • Hestenes MR, Stiefel E. Methods of conjugate gradients for solving linear systems. J Res Natl Bur Stand. 1952;49:409–436.
  • Barrett R, Berry M, Chan TF, et al. Templates for the solution of linear systems: building blocks for iterative methods. Society for Industrial and Applied Mathematics; 1994.
  • Sutherland LII W. The viscosity of gases and molecular force. Lond Edinb Dublin Philos Mag J Sci. 1893 Dec;36(223):507–531.
  • Ouvrard H, Koobus B, Dervieux A, et al. Classical and variational multiscale LES of the flow around a circular cylinder on unstructured grids. Comput Fluids. 2010 Aug;39(7):1083–1094.
  • Burcat A. Third millennium ideal gas and condensed phase thermochemical database for combustion with updates from active thermochemical tables. Argonne National Laboratory; 2005. p. 417.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.