188
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Evolution of turbulent mixing driven by implosion in spherical geometry

, , , &
Pages 419-444 | Received 30 Nov 2022, Accepted 24 Jun 2023, Published online: 18 Jul 2023

References

  • Richtmyer RD. Taylor instability in shock acceleration of compressible fluids. Commun Pure Appl Math. 1960;13(2):297–319. doi:10.1002/cpa.3160130207
  • Meshkov EE. Instability of the interface of two gases accelerated by a shock wave. Sov Fluid Dyn. 1972;4(5):101–104. doi:10.1007/BF01015969
  • Rayleigh L. Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density. Proc London Math Soc. 1883;14:170–177. doi:10.1112/plms/s1-14.1.170
  • Taylor GI. The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. I. Proc R Soc London Ser A. 1950;201:192–196. doi:10.1098/rspa.1950.0052
  • Thomson S, Kelvin L. Xlvi. XLVI. Hydrokinetic solutions and observations. Edinburgh, Dublin Philos Magaz J Sci. 1871;42:362–377. doi:10.1080/14786447108640585
  • Helmholtz S. Monthly reports of the Royal Prussian Academy of Philosophy in Berlin, Über discontinuierliche flüssigkeits-bewegungen (on the discontinuous movements of fluids). Monatsberichte der Königlichen Preussiche Akademie der Wissenschaften zu Berlin. 1868;23:215.
  • Lindl J, Landen O, Edwards J, et al. Review of the national ignition campaign 2009-2012. Phys Plasmas. 2014;21(2):0020501, doi:10.1063/1.4865400
  • Yang J, Kubota T, Zukoshki EE. Applications of shock-induced mixing to supersonic combustion. AIAA J. 1993;31:854–862. doi:10.2514/3.11696
  • Arnett D. The role of mixing in astrophysics. Astrophys. J Suppl Ser. 2000;127:213–217. doi:10.1086/313364
  • Maran SP, Sonneborn G, Pun CSJ, et al. Physical conditions in circumstellar gas surrounding SN 1987A 12 years after outburst. J Astrophys. 2000;545(1):390–398. doi:10.1086/317809
  • Remington BA, Drakeb RP, Takabe H, et al. A review of astrophysics experiments on intense lasers. Phys Plasmas. 2000;7(5):1641–1652. doi:10.1063/1.874046
  • Brouillette M. The Richtmyer-Meshkov instability. Annu Rev Fluid Mech. 2002;34:445–468. doi:10.1146/annurev.fluid.34.090101.162238
  • Zhou Y. Rayleigh-Taylor and Richtmyer-Meshkov instability induced flow, turbulence, and mixing. I Phys Rep. 2017;720-722:1–136. doi:10.1016/j.physrep.2017.07.005
  • Zhou Y. Rayleigh-Taylor and Richtmyer-Meshkov instability induced flow, turbulence, and mixing. I Phys Rep. 2017;723-725:1–160. doi:10.1016/j.physrep.2017.07.008
  • Bell GI. Taylor instability on cylinders and spheres in the small amplitude approximation. Report No. LA-1321, LANL 1951.
  • Plesset MS. On the stability of fluid flows with spherical symmetry. J. Appl. Phys. 1954;25:96–98. doi:10.1063/1.1721529
  • Mikaelian KO. Rayleigh-Taylor and Richtmyer-Meshkov instabilities and mixing in stratified cylindrical shells. Phys Fluids. 2005;17(9):0094105, doi:10.1063/1.2046712
  • Mikaelian KO. Rayleigh-Taylor and Richtmyer-Meshkov instabilities and mixing in stratified spherical shells. Phys Rev A. 1990;42(6):3400–3420. doi:10.1103/PhysRevA.42.3400
  • Lombardini M, Pullin DI. Small-amplitude perturbations in the three-dimensional cylindrical Richtmyer-Meshkov instability. Phys Fluids. 2009;21(11):114103, doi:10.1063/1.3258668
  • Biamino L, Mariani C, Jourdan G, et al. Planar shock focusing through perfect Gas lens: first experimental demonstration. J Fluid Eng. 2014;136:091204, doi:10.1115/1.4026562
  • Biamino L, Jourdan G, Mariani C, et al. On the possibility of studying the converging Richtmyer-Meshkov instability in a conventional shock tube. Exp Fluids. 2015;56:26–30. doi:10.1007/s00348-015-1903-0
  • Vandenboomgaerde M, Rouzier P, Souffland D, et al. Nonlinear growth of the converging Richtmyer-Meshkov instability in a conventional shock tube. Phys Rev Fluid. 2018;3(1):014001, doi:10.1103/PhysRevFluids.3.014001
  • Dimotakis PE, Samtaney R. Planar shock cylindrical focusing by a perfect-gas lens. Phys Fluids. 2006;18(3):0031705, doi:10.1063/1.2186553
  • Vandenboomgaerde M, Aymard C. Analytical theory for planar shock focusing through perfect gas lens and shock tube experiment designs. Phys Fluids. 2011;23(1):0016101, doi:10.1063/1.3549930
  • Zhai ZG, Liu CL, Qin FH, et al. Generation of cylindrical converging shock waves based on shock dynamics theory. Phys Fluids. 2010;22(4):0041701, doi:10.1063/1.3392603
  • Zhai ZG, Si T, Luo XS, et al. Parametric study of cylindrical converging shock waves generated based on shock dynamics theory. Phys Fluids. 2012;24(2):026101, doi:10.1063/1.3682376
  • Luo XS, Si T, Yang JM, et al. A cylindrical converging shock tube for shock-interface studies. Rev Sci Instrum. 2014;85(1):0015107, doi:10.1063/1.4861357
  • Si T, Zhai ZG, Luo XS. Experimental study of Richtmyer-Meshkov instability in a cylindrical converging shock tube. Laser Part Beams. 2014;32:343–351. doi:10.1017/S0263034614000202
  • Si T, Zhai ZG, Luo XS, et al. Experimental study on a heavy-gas cylinder accelerated by cylindrical converging shock waves. Shock Waves. 2014;24:3–9. doi:10.1007/s00193-013-0450-y
  • Luo XS, Zhang F, Ding JC, et al. Long-term effect of Rayleigh-Taylor stabilization on converging Richtmyer-Meshkov instability. J Fluid Mech. 2018;849:231–244. doi:10.1017/jfm.2018.424
  • Hosseini SHR, Takayama K. Experimental study of Richtmyer-Meshkov instability induced by cylindrical shock waves. Phys Fluids. 2005;17(8):0084101, doi:10.1063/1.1964916
  • Hosseini SHR, Takayama K. Experimental study of toroidal shock wave focusing in a compact vertical annular diaphragmless shock tube. Shock Waves. 2010;20:1–7. doi:10.1007/s00193-009-0227-5
  • Si T, Long T, Zhai ZG, et al. Experimental investigation of cylindrical converging shock waves interacting with a polygonal heavy gas cylinder. J Fluid Mech. 2015;784:225–251. doi:10.1017/jfm.2015.581
  • Lei F, Ding JC, Si T, et al. Experimental study on a sinusoidal air/SF interface accelerated by a cylindrically converging shock. J Fluid Mech. 2017;826:819–829. doi:10.1017/jfm.2017.506
  • Huang SH, Xu JY, Luo YF, et al. Smoothed particle hydrodynamics simulation of converging Richtmyer-Meshkov instability. Phys Fluids. 2020;32:0086102, doi:10.1063/5.0015589
  • Luo XS, Ding JC, Wang MH, et al. A semi-annular shock tube for studying cylindrically converging Richtmyer-Meshkov instability. Phys Fluids. 2015;27(9):0091702, doi:10.1063/1.4931929
  • Perry RW, Kantrowitz A. The production and stability of converging shock waves. J Appl Phys. 1951;22(7):878–886. doi:10.1063/1.1700067
  • Ding JC, Si T, Yang JM, et al. Measurement of a Richtmyer-Meshkov instability at an AirSF6 interface in a semiannular shock tube. Phys Rev Lett. 2017;119(1):014501, doi:10.1103/PhysRevLett.119.014501
  • Ding JC, Li JM, Sun R, et al. Convergent Richtmyer-Meshkov instability of a heavy gas layer with perturbed outer interface. J Fluid Mech. 2019;878:277–291. doi:10.1017/jfm.2019.661
  • Sun R, Ding JC, Zhai ZG, et al. Convergent Richtmyer–Meshkov instability of heavy gas layer with perturbed inner surface. J Fluid Mech. 2020;902:A3, doi:10.1017/jfm.2020.584
  • Li JM, Ding JC, Si T, et al. Convergent Richtmyer-Meshkov instability of light gas layer with perturbed outer surface. J Fluid Mech. 2020;884:R2, doi:10.1017/jfm.2019.989
  • Liang Y, Ding JC, Zhai ZG, et al. Interaction of cylindrically converging diffracted shock with uniform interface. Phys Fluids. 2017;29(8):0086101, doi:10.1063/1.4997071
  • Zou LY, Al-Marouf M, Cheng W, et al. Richtmyer–Meshkov instability of an unperturbed interface subjected to a diffracted convergent shock. J Fluid Mech. 2019;879:448–467. doi:10.1017/jfm.2019.694
  • Wu JX, Liu H, Xiao ZL. Refined modelling of the single-mode cylindrical Richtmyer-Meshkov instability. J Fluid Mech. 2021;908:A9, doi:10.1017/jfm.2020.723
  • Zheng C, Zhang HH, Chen ZH, et al. Drop impacting on a single layer of particles: evolution of ring without particles. Phys Fluids. 2019;31:0047107, doi:10.1063/1.5090909
  • Kjellander M, Tillmark N, Apazidis N. Energy concentration by spherical converging shocks generated in a shock tube. Phys Fluids. 2012;24(12):126103, doi:10.1063/1.4772073
  • Liverts M, Apazidis N. Limiting temperatures of spherical shock wave implosion. Phys Rev Lett. 2016;116(1):014501, doi:10.1103/PhysRevLett.116.014501
  • Youngs DL, Williams RJR. Turbulent mixing in spherical implosions. Int J Numer Meth Fluids. 2008;56:1597–1603. doi:10.1002/fld.1594
  • Joggerst CC, Nelson A, Woodward P, et al. Cross-code comparisons of mixing during the implosion of dense cylindrical and spherical shells. J Comput Phys. 2014;275:154–173. doi:10.1016/j.jcp.2014.06.037
  • Flaig M, Clark D, Weber C, et al. Single-mode perturbation growth in an idealized spherical implosion. J Comput Phys. 2018;371:801–819. doi:10.1016/j.jcp.2018.06.014
  • El Rafei M, Flaig M, Youngs DL, et al. Three-dimensional simulations of turbulent mixing in spherical implosions. Phys Fluids. 2019;31:114101, doi:10.1063/1.5113640
  • Boureima I, Ramaprabhu P, Attal N. Properties of the turbulent mixing layer in a spherical implosion. J Fluid Eng. 2018;140:050905, doi:10.1115/1.4038401
  • Lombardini M, Pullin DI, Meiron DI. Turbulent mixing driven by spherical implosions. Part 1. Flow description and mixing-layer growth. J Fluid Mech. 2014;748:85–112. doi:10.1017/jfm.2014.161
  • Lombardini M, Pullin DI, Meiron DI. Turbulent mixing driven by spherical implosions. Part 2. Turbulence statistics. J Fluid Mech. 2014;748:113–142. doi:10.1017/jfm.2014.163
  • Mostert W, Wheatley V, Samtaney R, et al. Effects of magnetic fields on magnetohydrodynamic cylindrical and spherical Richtmyer-Meshkov instability. Phys Fluids. 2015;27(10):104102, doi:10.1063/1.4932110
  • Bakhsh A, Gao S, Samtaney R, et al. Linear simulations of the cylindrical Richtmyer-Meshkov instability in magnetohydrodynamics. Phys Fluids. 2016;28(3):0034106, doi:10.1063/1.4943162
  • Tritschler VK, Olson BJ, Lele SK, et al. On the Richtmyer-Meshkov instability evolving from a deterministic multimode planar interface. J Fluid Mech. 2014;755:429–462. doi:10.1017/jfm.2014.436
  • Tritschler VK, Avdonin A, Hickel S, et al. Quantification of initial-data uncertainty on a shock-accelerated gas cylinder. Phys Fluids. 2014;26(2):026101, doi:10.1063/1.4865756
  • Tritschler VK, Zubel M, Hickel S, et al. Evolution of length scales and statistics of Richtmyer-Meshkov instability from direct numerical simulations. Phys Rev E. 2014;90(6):063001, doi:10.1103/PhysRevE.90.063001
  • Bai JS, Wang T, Li P, et al. Numerical simulation of the hydrodynamic instability experiments and flow mixing. Sci China Ser G. 2009;52(12):2027–2040. doi:10.1007/s11433-009-0277-9
  • Wang T, Bai JS, Li P, et al. The numerical study of shock-induced hydrodynamic instability and mixing. Chin Phys B. 2009;18(3):1127–1135. doi:10.1088/1674-1056/18/3/048
  • Wang T, Li P, Bai JS, et al. Large-eddy simulation of the Richtmyer-Meshkov instability. Can J Phys. 2015;93(10):1124–1130. doi:10.1139/cjp-2014-0652
  • Wang T, Bai JS, Li P, et al. Large-eddy simulations of the multi-mode Richtmyer-Meshkov instability and turbulent mixing under reshock. High Energ Dens Phys. 2016;19(1):65–75. doi:10.1016/j.hedp.2016.03.001
  • Wang T, Tao G, Bai JS, et al. Dynamical behavior of the Richtmyer–Meshkov instability-induced turbulent mixing under multiple shock interactions. Can J Phys. 2017;95(8):671–681. doi:10.1139/cjp-2016-0633
  • Bai JS, Liu JH, Wang T, et al. Investigation of the Richtmyer-Meshkov instability with double perturbation interface in nonuniform flows. Phys Rev E. 2010;81(2):056302, doi:10.1103/PhysRevE.81.056302
  • Bai JS, Zou LY, Wang T, et al. Experimental and numerical study of shock-accelerated elliptic heavy gas cylinders. Phys Rev E. 2010;82(5):056318, doi:10.1103/PhysRevE.82.056318
  • Thornber B, Drikakis D, Youngs DL, et al. The influence of initial conditions on turbulent mixing due to Richtmyer-Meshkov instability. J Fluid Mech. 2010;654:99–139. doi:10.1017/S0022112010000492
  • Olson BJ, Greenough J. Large eddy simulation requirements for the Richtmyer-Meshkov instability. Phys Fluids. 2014;26(4):0044103, doi:10.1063/1.4871396
  • Liu H, Xiao ZL. Scale-to-scale energy transfer in mixing flow induced by the Richtmyer-Meshkov instability. Phys Rev E. 2016;93(5):053112, doi:10.1103/PhysRevE.93.053112
  • Hill DJ, Pantano C, Pullin DI. Large-eddy simulation and multiscale modelling of a Richtmyer-Meshkov instability with reshock. J Fluid Mech. 2006;557:29–61. doi:10.1017/S0022112006009475
  • Cabot W, Zhou Y. Statistical measurements of scaling and anisotropy of turbulent flows induced by Rayleigh-Taylor instability. Phys Fluids. 2013;25(1):015107, doi:10.1063/1.4774338
  • Orlicz GC, Balasubramanian S, Vorobieff P, et al. Mixing transition in a shocked variable-density flow. Phys Fluids. 2015;27(11):114102, doi:10.1063/1.4935183
  • Kolmogorov AN. The local structure of turbulence in incompressible viscous fluid for very large reynolds numbers. Dokl Akad Nauk SSSR. 1941;30:301–304. doi:10.1098/rspa.1991.0075
  • Zhou Y. A scaling analysis of turbulent flows driven by Rayleigh-Taylor and Richtmyer-Meshkov instabilities. Phys Fluids. 2001;13:538–543. doi:10.1063/1.1336151

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.