3,088
Views
33
CrossRef citations to date
0
Altmetric
Focus on advanced nanoprocessing and applications in sensorics

Bloch surface wave structures for high sensitivity detection and compact waveguiding

& ORCID Icon
Pages 398-409 | Received 18 Apr 2016, Accepted 13 Jun 2016, Published online: 29 Jul 2016

References

  • Lubbers DW , Optiz N . Eine neue pCO2-bzw: pO2-Messonde zur Messung des pCO2 oder pO2 von Gasen und Flussigkeiten [The pCO2-/pO2-optode: a new probe for measurement of pCO2 or pO in fluids and gases]. Zeitschrift Fur Naturforschung C. 1975;30:532–533.
  • Homola J , Yee SS , Gauglitz G . Surface plasmon resonance sensors: review. Sens. Actuators B Chem. 1999;54:3–15. 10.1016/S0925-4005(98)00321-9
  • Homola J . Surface plasmon resonance sensors for detection of chemical and biological species. Chem. Rev. 2008;108:462–493. 10.1021/cr068107d
  • Ciminelli C , Campanella CM , Dell’Olio, F , et al. Label-free optical resonant sensors for biochemical applications. Prog. Quant. Electron. 2013;37:51–107. 10.1016/j.pquantelec.2013.02.001
  • Nylander C , Liedberg B , Lind T . Gas detection by means of surface plasmons resonance. Sens. Actuators B Chem. 1982;3:79–88.10.1016/0250-6874(82)80008-5
  • Liedberg B , Nylander C , Lundstrom I . Surface plasmons resonance for gas detection and biosensing. Sens. Actuators B Chem. 1983;4:299–304. 10.1016/0250-6874(83)85036-7
  • Liedberg B , Nylander C , Lundstrom I . Biosensing with surface plasmon resonance—how it all started. Biosens. Bioelectron. 1995;10: i–ix.10.1016/0956-5663(95)96965-2
  • Piliarik M , Homola J . Surface plasmon resonance (SPR) sensors: approaching their limits? Opt. express. 2009;17:16505–16517.10.1364/OE.17.016505
  • Roh S , Chung T , Lee B . Overview of the characteristics of micro- and nano-structured surface plasmon resonance sensors. Sensors. 2011;11:1565–1588.10.3390/s110201565
  • Zhao C , Zhang J . Plasmonic demultiplexer and guiding. ACS Nano. 2010;4:6433–6438.10.1021/nn101334a
  • Robertson WM . Experimental measurement of the effect of termination on surface electromagnetic waves in one-dimensional photonic bandgap arrays. J. Lightwave Technol. 1999;17:2013–2017.10.1109/50.802988
  • Shinn M , Robertson WM . Surface plasmon-like sensor based on surface electromagnetic waves in a photonic band-gap material. Sens. Actuators B Chem. 2005;105:360–364.10.1016/j.snb.2004.06.024
  • Yeh P , Yariv A , Hong CS . Electromagnetic propagation in periodic stratified media. I. General theory. J. Opt. Soc. Am. 1977;67:423–438.10.1364/JOSA.67.000423
  • Yeh P , Yariv A , Cho AY . Optical surface waves in periodic layered media. Appl. Phys. Lett. 1978;32:104–105.10.1063/1.89953
  • Meade RD , Brommer KD , Rappe AM , et al . Electromagnetic Bloch waves at the surface of a photonic crystal. Phys. Rev. B. 1991;44:10961–10964.10.1103/PhysRevB.44.10961
  • Robertson WM , Arjavalingam G , Meade RD , et al . Observation of surface photons on periodic dielectric arrays. Opt. Lett. 1993;18:528–530.10.1364/OL.18.000528
  • Gao J , Sarangan AM , Zhan Q . Polarization multiplexed fluorescence enhancer using a pixelated one-dimensional photonic band gap structure. Opt. Lett. 2012;37:2640–2642.10.1364/OL.37.002640
  • Descrovi E , Sfez T , Dominici L , et al . Near-field imaging of Bloch surface waves on silicon nitride one-dimensional photonic crystals. Opt. Express. 2008;16:5453–5464.10.1364/OE.16.005453
  • Cush R , Cronin JM , Stewart WJ , et al . The resonant mirror: a novel optical biosensor for direct sensing of biomolecular interactions Part I: Principle of operation and associated instrumentation. Biosens. Bioelectron. 1993;8:347–354.10.1016/0956-5663(93)80073-X
  • Daghestani HN , Day BW . Theory and applications of surface plasmon resonance, resonant mirror, resonant waveguide grating, and dual polarization interferometry biosensors. Sensors. 2010;10:9630–9646.10.3390/s101109630
  • Su SY , Tang L , Yoshie T . Optical surface Bloch modes of complete photonic bandgap materials as a basis of optical sensing. Opt. Lett. 2011;36:2266–2268.10.1364/OL.36.002266
  • Guo Y , Ye JY , Divin C , et al . Real-time biomolecular binding detection using a sensitive photonic crystal biosensor. Anal. Chem. 2010;82:5211–5218.10.1021/ac100576y
  • Farmer A , Friedli AC , Wright SM , et al . Biosensing using surface electromagnetic waves in photonic band gap multilayers. Sens. Actuators B Chem. 2012;173:79–84.10.1016/j.snb.2012.06.015
  • Kong W , Zheng Z , Wan Y , et al . High-sensitivity sensing based on intensity-interrogated Bloch surface wave sensors. Sens. Actuators B Chem. 2014;193:467–471.10.1016/j.snb.2013.11.101
  • Li Y , Yang T , Pang Z , et al . Phase-sensitive Bloch surface wave sensor based on variable angle spectroscopic ellipsometry. Opt. Express. 2014;22:21403–21410.10.1364/OE.22.021403
  • Descrovi E , Frascella F , Ballarini M , et al . Surface label-free sensing by means of a fluorescent multilayered photonic structure. Appl. Phys. Lett. 2012;101:131105.10.1063/1.4754615
  • Sinibaldi A , Danz N , Descrovi E , et al . Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors. Sens. Actuators B Chem. 2012;174:292–298.10.1016/j.snb.2012.07.015
  • Konopsky VN , Karakouz T , Alieva EV , et al . Photonic crystal biosensor based on optical surface waves. Sensors. 2013;13:2566–2578.10.3390/s130202566
  • Sinibaldi A , Rizzo R , Figliozzi G , et al . A full ellipsometric approach to optical sensing with Bloch surface waves on photonic crystals. Opt. Express. 2013;21:23331–23344.10.1364/OE.21.023331
  • Paeder V , Musi V , Hvozdara L , et al . Detection of protein aggregation with a Bloch surface wave based sensor. Sens. Actuators B Chem. 2011;157:260–264.10.1016/j.snb.2011.03.060
  • Ballarini M , Frascella F , Enrico E , et al . Bloch surface waves controlled fluorescence emission: Coupling into nanometer-sized polymeric waveguides. Appl. Phys. Lett. 2012;100:063305.10.1063/1.3684272
  • Badugu R , Nowaczyk K , Descrovi E , et al . Radiative decay engineering 6: fluorescence on one-dimensional photonic crystals. Anal. Biochem. 2013;442:83–96.10.1016/j.ab.2013.07.021
  • Yu L , Barakat E , Sfez T , et al . Manipulating Bloch surface waves in 2d: a platform concept-based flat lens. Light Sci. Appl. 2014;3:e124.10.1038/lsa.2014.5
  • Michelotti F , Sciacca B , Dominici L , et al . Fast optical vapour sensing by Bloch surface waves on porous silicon membranes. Phys. Chem. Chem. Phys. 2010;12:502–506.10.1039/B914280K
  • Rodriguez GA , Lonai JD , Mernaugh RL , et al . Porous silicon Bloch surface and sub-surface wave structure for simultaneous detection of small and large molecules. Nanoscale Res. Lett. 2014;9:383.10.1186/1556-276X-9-383
  • Rodriguez GA , Ryckman JD , Jiao Y , et al . A size selective porous silicon grating-coupled Bloch surface and sub-surface wave biosensor. Biosens Bioelectron. 2014;53:486–493.10.1016/j.bios.2013.10.028
  • Qiao H , Soeriyadi AH , Guan B , et al . The analytical performance of a porous silicon Bloch surface wave biosensors as protease biosensor. Sens. Actuators B Chem. 2015;211:469–475.10.1016/j.snb.2015.01.098
  • Descrovi E , Frascella F , Sciacca B , et al . Coupling of surface waves in highly defined one-dimensional porous silicon photonic crystals for gas sensing applications. Appl. Phys. Lett. 2007;91:241109.10.1063/1.2824387
  • Sinibaldi A , Fieramosca A , Rizzo R , et al . Combining label-free and fluorescence operation of Bloch surface wave optical sensors. Opt. Lett. 2014;39:2947–2950.10.1364/OL.39.002947
  • Sfez T , Descrovi E , Yu L , et al . Bloch surface waves in ultrathin waveguides: near-field investigation of mode polarization and propagation. J. Opt. Soc. Am. B. 2010;27:1617–1625.10.1364/JOSAB.27.001617
  • Liscidini M , Gerace D , Sanvitto D , et al . Guided Bloch surface wave polaritons. Appl. Phys. Lett. 2011;98:122228.
  • Yu L , Barakat E , Nakagawa W , et al . Investigation of ultra-thin waveguide arrays on a Bloch surface wave platform. J. Opt. Soc. Am. B. 2014;31:2996–3000.10.1364/JOSAB.31.002996
  • Kretschmann E , Raether H . Radiative decay of non radiative surface plasmons excited by light. Z. Naturforsch. 1968;23a : 2135–2136.
  • Raether H . Surface plasmons on smooth and rough surfaces and on gratings. Berlin: Springer-Verlag; 1988.
  • Homola J , Piliarik M . Surface Plasmon Resonance (SPR) sensors. Springer Series on Chemical Sensors and Biosensors. 2006;4:45–67.10.1007/b100321
  • Frascella F , Ricciardi S , Rivolo P , et al . A fluorescent one-dimensional photonic crystal for label-free biosensing based on Bloch surface waves. Sensors. 2013;13:2011–2022.10.3390/s130202011
  • Frascella F , Petri C , Ricciardi S , et al . Hydrogel-terminated photonic crystal for label-free detection of angiopoietin-1. J. Lightwave Tech. 2016. 10.1109/JLT.2016.2530876.
  • Giorgis F , Descrovi E , Summonte C , et al . Experimental determination of the sensitivity of Bloch surface waves based sensors. Opt. Express. 2010;18:8087–8093.10.1364/OE.18.008087
  • Descrovi E , Sfez T , Quaglio M , et al . Guided Bloch surface waves on ultrathin polymeric ridges. Nano Lett. 2010;10:2087–2091.10.1021/nl100481q
  • Angelini A , Lamberti A , Ricciardi S , et al . In-plane 2D focusing of surface waves by ultrathin refractive structures. Opt. Lett. 2014;39:6391–6394.10.1364/OL.39.006391
  • Dubey R , Barakat E . Herzig HP Bloch surface waves based platform for integrated optics. IEEE Photonics Conference (IPC), 2015:200–201.