3,978
Views
65
CrossRef citations to date
0
Altmetric
Organic and soft materials (colloids, liquid crystals, gel, polymers)

Chitosan nanocomposites based on distinct inorganic fillers for biomedical applications

, , &
Pages 626-643 | Received 17 May 2016, Accepted 22 Aug 2016, Published online: 10 Oct 2016

References

  • Mai Y-W, Yu Z-Z. Polymer nanocomposites. Cambridge: Woodhead Publishing; 200610.1533/9781845691127
  • Alves NM, Mano JF. Chitosan derivatives obtained by chemical modifications for biomedical and environmental applications. Int. J. Biol. Macromolec. 2008;43:401–414. 10.1016/j.ijbiomac.2008.09.007
  • Rinaudo M. Chitin and chitosan: properties and applications. Prog Polym Sci. 2006;31:603–632. 10.1016/j.progpolymsci.2006.06.001
  • Ravi Kumar M. A review of chitin and chitosan applications. React. Funct. Polym. 2000;46:1–27. 10.1016/S1381-5148(00)00038-9
  • Mano JF. Stimuli-Responsive polymeric systems for biomedical applications. Adv. Eng. Mater. 2008;10:515–527. 10.1002/(ISSN)1527-2648
  • Croisier F, Jérôme C. Chitosan-based biomaterials for tissue engineering. Eur. Polym. J. 2013;49:780–792. 10.1016/j.eurpolymj.2012.12.009
  • Riva R, Ragelle H, des Rieux A, Duhem N, Jérôme C, Préat V. Chitosan and chitosan derivatives in drug delivery and tissue engineering. Berlin: Springer; 2011. 10.1007/978-3-642-24061-4
  • Shahidi F, Arachchi JKV, Jeon YJ. Food applications of chitin and chitosans. Trends Food Sci Technol. 1999;10:37–51. 10.1016/S0924-2244(99)00017-5
  • Acosta N, Jiménez C, Borau V, et al. Extraction and characterization of chitin from crustaceans. Biomass Bioenerg. 1993;5:145–153. 10.1016/0961-9534(93)90096-M
  • Madihally SV, Matthew HWT. Porous chitosan scaffolds for tissue engineering. Biomaterials. 1999;20:1133–1142. 10.1016/S0142-9612(99)00011-3
  • Kumar M, Muzzarelli RAA, Muzzarelli C, et al. Chitosan chemistry and pharmaceutical perspectives. Chem Rev. 2004;104:6017–6084. 10.1021/cr030441b
  • Singh DK, Ray AR. Biomedical applications of chitin, chitosan and their derivates. Rev Macromol: Chem Phys; 2000. 69–83. 10.1081/MC-100100579
  • Jayakumar R, Prabaharan M, Sudheesh Kumar PTS, et al. Biomaterials based on chitin and chitosan in wound dressing applications. Biotechnol. Adv. 2011;29:322–337. 10.1016/j.biotechadv.2011.01.005
  • Sudarshan NR, Hoover DG, Knorr D. Antibacterial action of chitosan. Food Biotechnol. 1992;6:257–272. 10.1080/08905439209549838
  • Ong SY, Wu J, Moochhala SM, et al. Development of a chitosan-based wound dressing with improved hemostatic and antimicrobial properties. Biomaterials. 2008;29:4323–4332. 10.1016/j.biomaterials.2008.07.034
  • Yang J, Tian F, Wang Z, et al. Effect of chitosan molecular weight and deacetylation degree on hemostasis. J Biomed Mater Res Part B Appl Biomater. 2008;84B:131–137. 10.1002/(ISSN)1552-4981
  • Jayakumar R, Reis RL, Mano JF. Chemistry and applications of phosphorylated chitin and chitosan. E-Polymers. 2006;035:1–16.
  • Lu GY, Kong LJ, Sheng BY, et al. Degradation of covalently cross-linked carboxymethyl chitosan and its potential application for peripheral nerve regeneration. Eur. Polym. J. 2007;43:3807–3818. 10.1016/j.eurpolymj.2007.06.016
  • Chaubaroux C, Vrana E, Debry C, et al. Collagen-Based fibrillar multilayer films cross-linked by a natural agent. Biomacromolecules. 2012;13:2128–2135. 10.1021/bm300529a
  • Ajayan PM, Schadler LS, Braun PV. Nanocomposite science and technology. Weinheim: Wiley-VCH; 2006. p. 239.
  • Hu KS, Gupta MK, Kulkarni DD, et al. Ultra-Robust graphene oxide-silk fibroin nanocomposite membranes. Adv Mater. 2013;25:2301–2307. 10.1002/adma.201300179
  • Rinaudo M. Main properties and current applications of some polysaccharides as biomaterials. Polym Int. 2008;57:397–430. 10.1002/(ISSN)1097-0126
  • Kuilla T, Bhadra S, Yao DH, et al. Recent advances in graphene based polymer composites. Prog. Polym. Sci. 2010;35:1350–1375. 10.1016/j.progpolymsci.2010.07.005
  • Hu KS, Kulkarni DD, Choi I, et al. Graphene-polymer nanocomposites for structural and functional applications. Prog. Polym. Sci. 2014;39:1934–1972. 10.1016/j.progpolymsci.2014.03.001
  • Fischer H. Polymer nanocomposites: from fundamental research to specific applications. Mater Sci Eng C-Biomimetic Supramol Syst. 2003;23:763–772. 10.1016/j.msec.2003.09.148
  • Terrones M, Martín O, González M, et al. Interphases in graphene polymer-based nanocomposites: achievements and challenges. Adv Mater. 2011;23:5302–5310. 10.1002/adma.v23.44
  • Podsiadlo P, Tang ZY, Shim BS, et al. Counterintuitive effect of molecular strength and role of molecular rigidity on mechanical properties of layer-by-layer assembled nanocomposites. Nano Lett. 2007;7:1224–1231. 10.1021/nl0700649
  • Das P, Schipmann S, Malho JM, et al. Facile access to large-scale, self-assembled, nacre-inspired, high-performance materials with tunable nanoscale periodicities. ACS Appl Mater Inter. 2013;5:3738–3747. 10.1021/am400350q
  • Avérous L, Pollet E. Environmental silicate nano-biocomposites. London: Springer; 2012. 10.1007/978-1-4471-4108-2
  • Motshekga SC, Ray SS, Onyango MS, et al. Preparation and antibacterial activity of chitosan-based nanocomposites containing bentonite-supported silver and zinc oxide nanoparticles for water disinfection. Appl. Clay Sci. 2015;114:330–339. 10.1016/j.clay.2015.06.010
  • Dhivya S, Saravanan S, Sastry TP, et al. Nanohydroxyapatite-reinforced chitosan composite hydrogel for bone tissue repair in vitro and in vivo. J Nanobiotechnology. 2015;13:1–13.
  • Xiang CL, Li R, Adhikari B, et al. Sensitive electrochemical detection of Salmonella with chitosan-gold nanoparticles composite film. Talanta. 2015;140:122–127. 10.1016/j.talanta.2015.03.033
  • Gupta P, Sharan S, Roy P, et al. Aligned carbon nanotube reinforced polymeric scaffolds with electrical cues for neural tissue regeneration. Carbon. 2015;95:715–724. 10.1016/j.carbon.2015.08.107
  • Song KL, Gao AQ, Cheng X, et al. Preparation of the superhydrophobic nano-hybrid membrane containing carbon nanotube based on chitosan and its antibacterial activity. Carbohydr. Polym. 2015;130:381–387. 10.1016/j.carbpol.2015.05.023
  • Sengiz C, Congur G, Eksin E, et al. Multiwalled carbon nanotubes-chitosan modified single-use biosensors for electrochemical monitoring of drug-DNA interactions. Electroanalysis. 2015;27:1855–1863. 10.1002/elan.v27.8
  • He LH, Wang HF, Xia GM, et al. Chitosan/graphene oxide nanocomposite films with enhanced interfacial interaction and their electrochemical applications. Appl Surf Sci. 2014;314:510–515. 10.1016/j.apsusc.2014.07.033
  • Li YH, Sun JK, Du QJ, et al. Mechanical and dye adsorption properties of graphene oxide/chitosan composite fibers prepared by wet spinning. Carbohydr. Polym. 2014;102:755–761. 10.1016/j.carbpol.2013.10.094
  • Han DL, Yan LF, Chen WF, et al. Preparation of chitosan/graphene oxide composite film with enhanced mechanical strength in the wet state. Carbohydr. Polym. 2011;83:653–658. 10.1016/j.carbpol.2010.08.038
  • Alexandre M, Dubois P. Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater Sci Eng R. 2000;28:1–63. 10.1016/S0927-796X(00)00012-7
  • Azeez AA, Rhee KY, Park SJ, et al. Epoxy clay nanocomposites - processing, properties and applications: a review. Compos Part B-Eng. 2013;45:308–320. 10.1016/j.compositesb.2012.04.012
  • Reddy B. Advances in diverse industrial applications of nanocomposites. Polymer/Clay Nanocomposites Intech. 2011, 139–176.
  • Maisanaba S, Pichardo S, Puerto M, et al. Toxicological evaluation of clay minerals and derived nanocomposites: a review. Environ Res. 2015;138:233–254. 10.1016/j.envres.2014.12.024
  • Zhu W, Lu C, Chang F, et al. Supramolecular ionic strength-modulating microstuctures and properties of nacre-like biomimetic nanocomposites containing high loading clay. RSC Adv. 2012;2:6295–6305. 10.1039/c2ra20523h
  • Ray SS, Okamoto M. Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci. 2003;28:1539–1641.
  • LeBaron PC, Wang Z, Pinnavaia TJ. Polymer-layered silicate nanocomposites: an overview. Appl Clay Sci. 1999;15:11–29. 10.1016/S0169-1317(99)00017-4
  • Arora A, Padua GW. Review: nanocomposites in food packaging. J. Food Sci. 2010;75:R43–R49. 10.1111/jfds.2010.75.issue-1
  • Park SH, Lee HS, Choi JH, et al. Improvements in barrier properties of poly(lactic acid) films coated with chitosan or chitosan/clay nanocomposite. J. Appl. Polym. Sci. 2012;125:E675–E680. 10.1002/app.36405
  • Abdeen R, Salahuddin N. Modified Chitosan-clay nanocomposite as a drug delivery system intercalation and in vitro release of ibuprofen. J Chem. 2013;1–9.
  • Lertsutthiwong P, Noomun K, Khunthon S, et al. Influence of chitosan characteristics on the properties of biopolymeric chitosan-montmorillonite. Prog. Nat. Sci.-Mater Int. 2012;22:502–508. 10.1016/j.pnsc.2012.07.008
  • Ennajih H, Bouhfid R, Essassi EM, et al. Chitosan-montmorillonite bio-based aerogel hybrid microspheres. Micropor Mesopor Mat. 2012;152:208–213. 10.1016/j.micromeso.2011.11.032
  • Wang SS, Shu YQ, Liang BL, et al. Nacre-inspired green artificial bionanocomposite films from the layerby-layer assembly of montmorillonite and chitosan. Chinese J Polym Sci. 2014;32:675–680. 10.1007/s10118-014-1455-4
  • Boccaccini AR, Erol M, Stark WJ, et al. Polymer/bioactive glass nanocomposites for biomedical applications: a review. Compos. Sci. Technol. 2010;70:1764–1776. 10.1016/j.compscitech.2010.06.002
  • Caridade SG, Merino EG, Alves NM, et al. Chitosan membranes containing micro or nano-size bioactive glass particles: evolution of biomineralization followed by in situ dynamic mechanical analysis. J Mech Behav Biomed Mater. 2013;20:173–183. 10.1016/j.jmbbm.2012.11.012
  • Hench LL. Bioceramics. J. Am. Ceram. Soc. 1998;81:1705–1728.
  • Rezwan K, Chen QZ, Blaker JJ, et al. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials. 2006;27:3413–3431. 10.1016/j.biomaterials.2006.01.039
  • Hong Z, Reis RL, Mano JF. Preparation and in vitro characterization of novel bioactive glass ceramic nanoparticles. J. Biomed. Mater. Res Part A. 2009;88A:304–313. 10.1002/jbm.a.v88a:2
  • Hong ZK, Reis RL, Mano JF. Preparation and in vitro characterization of scaffolds of poly(l-lactic acid) containing bioactive glass ceramic nanoparticles. Acta Biomater. 2008;4:1297–1306. 10.1016/j.actbio.2008.03.007
  • Luz GM, Mano JF. Preparation and characterization of bioactive glass nanoparticles prepared by sol-gel for biomedical applications. Nanotechnology. 2011;22:1–11.
  • Knowles JC. Phosphate based glasses for biomedical applications. J Mater Chem. 2003;13:2395–2401. 10.1039/b307119g
  • Okamoto M, John B. Synthetic biopolymer nanocomposites for tissue engineering scaffolds. Prog Polym Sci. 2013;38:1487–1503. 10.1016/j.progpolymsci.2013.06.001
  • Gu CH, Zhang H, Lang MD. Preparation of mono-dispersed silver nanoparticles assisted by chitosan-g-poly(epsilon-caprolactone) micelles and their antimicrobial application. Appl Surf Sci. 2014;301:273–279. 10.1016/j.apsusc.2014.02.059
  • Li M, Wang YH, Zhang Y, et al. Graphene functionalized porous Au-paper based electrochemiluminescence device for detection of DNA using luminescent silver nanoparticles coated calcium carbonate/carboxymethyl chitosan hybrid microspheres as labels. Biosens Bioelectron. 2014;59:307–313. 10.1016/j.bios.2014.03.072
  • Potara M, Jakab E, Damert A, et al. Synergistic antibacterial activity of chitosan-silver nanocomposites on Staphylococcus aureus. Nanotechnology. 2011;22:135101–135110.
  • Du Y, Luo XL, Xu JJ, et al. A simple method to fabricate a chitosan-gold nanoparticles film and its application in glucose biosensor. Bioelectrochemistry. 2007;70:342–347. 10.1016/j.bioelechem.2006.05.002
  • Li LH, Deng JC, Deng HR, et al. Synthesis and characterization of chitosan/ZnO nanoparticle composite membranes. Carbohydr. Res. 2010;345:994–998. 10.1016/j.carres.2010.03.019
  • de Godoi FC, Rodriguez-Castellon E, Guibal E, et al. An XPS study of chromate and vanadate sorption mechanism by chitosan membrane containing copper nanoparticles. Chem Eng J. 2013;234:423–429. 10.1016/j.cej.2013.09.006
  • Song XL, Luo XD, Zhang QQ, et al. Preparation and characterization of biofunctionalized chitosan/Fe3O4 magnetic nanoparticles for application in liver magnetic resonance imaging. J. Magn Magn Mater. 2015;388:116–122. 10.1016/j.jmmm.2015.04.017
  • Zhao LQ, Xue FM, Yu BW, et al. TiO2-graphene sponge for the removal of tetracycline. J. Nanopart. Res. 2015;17:1–9.
  • Peponi L, Puglia D, Torre L, et al. Processing of nanostructured polymers and advanced polymeric based nanocomposites. Mater Sci Eng R. 2014;85:1–46. 10.1016/j.mser.2014.08.002
  • Iijima S. Helical microtubules of graphitic carbon. Nature. 1991;354:56–58. 10.1038/354056a0
  • Thostenson ET, Ren ZF, Chou TW. Advances in the science and technology of carbon nanotubes and their composites: a review. Compos. Sci. Technol. 2001;61:1899–1912. 10.1016/S0266-3538(01)00094-X
  • Moniruzzaman M, Winey KI. Polymer nanocomposites containing carbon nanotubes. Macromolecules. 2006;39:5194–5205. 10.1021/ma060733p
  • Coleman JN, Khan U, Blau WJ, et al. Small but strong: a review of the mechanical properties of carbon nanotube-polymer composites. Carbon. 2006;44:1624–1652. 10.1016/j.carbon.2006.02.038
  • Li CY, Chou TW. Elastic moduli of multi-walled carbon nanotubes and the effect of van der Waals forces. Compos. Sci. Technol. 2003;63:1517–1524. 10.1016/S0266-3538(03)00072-1
  • De Volder MFL, Tawfick SH, Baughman RH, et al. Carbon Nanotubes: present and future commercial Applications. Science. 2013;339:535–539. 10.1126/science.1222453
  • Monthioux M. Filling single-wall carbon nanotubes. Carbon. 2002;40:1809–1823. 10.1016/S0008-6223(02)00102-1
  • Yu MF, Lourie O, Dyer MJ, et al. Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science. 2000;287:637–640. 10.1126/science.287.5453.637
  • Collins PG, Avouris P. Nanotubes for electronics. Sci Am. 2000;283:62–69. 10.1038/scientificamerican1200-62
  • Wei BQ, Vajtai R, Ajayan PM. Reliability and current carrying capacity of carbon nanotubes. Appl. Phys. Lett. 2001;79:1172–1174. 10.1063/1.1396632
  • Che JW, Çagin T, Goddard WA. Thermal conductivity of carbon nanotubes. Nanotechnology. 2000;11:65–69. 10.1088/0957-4484/11/2/305
  • Osman MA, Srivastava D. Temperature dependence of the thermal conductivity of single-wall carbon nanotubes. Nanotechnology. 2001;12:21–24. 10.1088/0957-4484/12/1/305
  • Berber S, Kwon YK, Tománek D. Unusually high thermal conductivity of carbon nanotubes. Phys Rev Lett. 2000;84:4613–4616. 10.1103/PhysRevLett.84.4613
  • Farsi M, Sani FM. Effects of multi-walled carbon nanotubes on the physical and mechanical properties of high-density polyethylene/wood flour nanocomposites. J Thermoplast. Compos. Mater. 2014;27:1139–1154. 10.1177/0892705713515899
  • Dresselhaus MS, Dresselhaus G, Eklund P.C. Science of fullerenes and carbon nanotubes. Academic Press, Inc., New York. 1996;381:15–54.
  • Lehman JH, Terrones M, Mansfield E, et al. Evaluating the characteristics of multiwall carbon nanotubes. Carbon. 2011;49:2581–2602. 10.1016/j.carbon.2011.03.028
  • Bitounis D, Ali-Boucetta H, Hong BH, et al. Prospects and challenges of graphene in biomedical applications. Adv Mater. 2013;25:2258–2268. 10.1002/adma.201203700
  • Rahmat M, Hubert P. Carbon nanotube-polymer interactions in nanocomposites: a review. Compos Sci Technol. 2011;72:72–84. 10.1016/j.compscitech.2011.10.002
  • Hirsch A. Functionalization of single-walled carbon nanotubes. Angew Chem Int Ed. 2002;41:1853–1859. 10.1002/1521-3773(20020603)41:11<1853::AID-ANIE1853>3.0.CO;2-N
  • Slonczewski JC, Weiss PR. Band structure of graphite. Phys Rev. 1958;109:272–279. 10.1103/PhysRev.109.272
  • Chen J, Yao BW, Li C, et al. An improved Hummers method for eco-friendly synthesis of graphene oxide. Carbon. 2013;64:225–229. 10.1016/j.carbon.2013.07.055
  • Novoselov KS,Fal’ko VI, Colombo L, et al. A roadmap for graphene. Nature. 2012;490:192–200.
  • Mayorov AS, Gorbachev RV, Morozov SV, et al. Micrometer-Scale ballistic transport in encapsulated graphene at room temperature. Nano Lett. 2011;11:2396–2399. 10.1021/nl200758b
  • Zhu YW, Murali S, Cai WW, et al. Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater. 2010;22:3906–3924. 10.1002/adma.201001068
  • Nair RR, Blake P, Grigorenko AN, et al. Fine structure constant defines visual transparency of graphene. Science. 2008;320:1308. 10.1126/science.1156965
  • Allen MJ, Tung VC, Kaner RB. Honeycomb carbon: a review of graphene. Chem Rev. 2010;110:132–145. 10.1021/cr900070d
  • Dreyer DR, Park S, Bielawski CW, et al. The chemistry of graphene oxide. Chem Soc Rev. 2010;39:228–240. 10.1039/B917103G
  • Wang GX, Yang J, Park J, et al. Facile synthesis and characterization of graphene nanosheets. J Phys Chem C. 2008;112:8192–8195. 10.1021/jp710931h
  • Compton OC, Nguyen ST. Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon-based materials. Small. 2010;6:711–723. 10.1002/smll.v6:6
  • Shen H, Zhang LM, Liu M, et al. Biomedical applications of graphene. Theranostics. 2012;2:283–294.
  • Luz GM, Mano JF. Biomimetic design of materials and biomaterials inspired by the structure of nacre. Philos Trans Royal Soc A: Math Phys Eng Sci. 2009;367:1587–1605. 10.1098/rsta.2009.0007
  • Stankovich S, Dikin DA, Dommett GHB, et al. Graphene-based composite materials. Nature. 2006;442:282–286. 10.1038/nature04969
  • Park S, An JH, Piner RD, et al. Aqueous suspension and characterization of chemically modified graphene sheets. Chem Mater. 2008;20:6592–6594. 10.1021/cm801932u
  • Mota J, Yu N, Caridade SG, et al. Chitosan/bioactive glass nanoparticle composite membranes for periodontal regeneration. Acta Biomater. 2012;8:4173–4180. 10.1016/j.actbio.2012.06.040
  • Seuss S, Lehmann M, Boccaccini AR. Alternating current electrophoretic deposition of antibacterial bioactive glass-chitosan composite coatings. Int. J. Mol. Sci. 2014;15:12231–12242. 10.3390/ijms150712231
  • Lee JS, Baek SD, Venkatesan J, et al. In vivo study of chitosan-natural nano hydroxyapatite scaffolds for bone tissue regeneration. Int. J. Biol. Macromolec. 2014;67:360–366. 10.1016/j.ijbiomac.2014.03.053
  • Li XY, Nan KH, Shi S, et al. Preparation and characterization of nano-hydroxyapatite/chitosan cross-linking composite membrane intended for tissue engineering. Int. J. Biol. Macromolec. 2012;50:43–49. 10.1016/j.ijbiomac.2011.09.021
  • Hwang JY, Kim HS, Kim JH, et al. Carbon nanotube nanocomposites with highly enhanced strength and conductivity for flexible electric circuits. Langmuir. 2015;31:7844–7851. 10.1021/acs.langmuir.5b00845
  • Fan HL, Wang LL, Zhao KK, et al. Fabrication, mechanical properties, and biocompatibility of graphene-reinforced chitosan composites. Biomacromolecules. 2010;11:2345–2351. 10.1021/bm100470q
  • Liu Hong, Li Jianhua, Ren Na, et al. Graphene oxide-reinforced biodegradable genipin-cross-linked chitosan fluorescent biocomposite film and its cytocompatibility. Int J Nanomedicine. 2013;8:3415–3426. 10.2147/IJN
  • Zheng YY, Monty J, Linhardt RJ. Polysaccharide-based nanocomposites and their applications. Carbohydr. Res. 2015;405:23–32. 10.1016/j.carres.2014.07.016
  • Ambrosio L. Biomedical composites. Cambridge: Woodhead Publishing; 2009.
  • Boccaccini A, Ma PX. Tissue engineering using ceramicas and polymers. UK: Woodhead Publishing; 2014.
  • Luz GM, Mano JF. Chitosan/bioactive glass nanoparticles composites for biomedical applications. Biomed. Mater. 2012;7:1–9.
  • Depan D. Biodegradable polymeric nanocomposites: advances in biomedical applications. Florida: CRC Press; 2015. 10.1201/b19314
  • Caridade SG, Merino EG, Alves NM, et al. Bioactivity and viscoelastic characterization of chitosan/bioglass (R) composite membranes. Macromol Biosci. 2012;12:1106–1113.10.1002/mabi.v12.8
  • Kithva P, Grøndahl L, Martin D, et al. Biomimetic synthesis and tensile properties of nanostructured high volume fraction hydroxyapatite and chitosan biocomposite films. J Mater Chem. 2010;20:381–389. 10.1039/B914798E
  • He YQ, Zhang NN, Wang WC, et al. Preparation of reduced graphene oxide/chitosan composite films with reinforced mechanical strength. Front Adv Mater Eng Technol, Pts. 2012;1–3(430–432):247–250.
  • Sarmento B, Neves J. Chitosan-Based systems for biopharmaceuticals: deliver, targeting and polymer therapeutics. UK: John Wiley & Sons; 2012. 10.1002/9781119962977
  • Anisha BS, Biswas R, Chennazhi KP, et al. Chitosan-hyaluronic acid/nano silver composite sponges for drug resistant bacteria infected diabetic wounds. Int. J. Biol. Macromolec. 2013;62:310–320. 10.1016/j.ijbiomac.2013.09.011
  • Mohandes F, Salavati-Niasari M. Freeze-drying synthesis, characterization and in vitro bioactivity of chitosan/graphene oxide/hydroxyapatite nanocomposite. RSC Adv. 2014;4:25993–26001. 10.1039/c4ra03534h
  • Olad A, Farshi Azhar FF. The synergetic effect of bioactive ceramic and nanoclay on the properties of chitosan-gelatin/nanohydroxyapatite-montmorillonite scaffold for bone tissue engineering. Ceram Int. 2014;40:10061–10072. 10.1016/j.ceramint.2014.04.010
  • Sun F, Cha HR, Bae K, et al. Mechanical properties of multilayered chitosan/CNT nanocomposite films. Mat Sci Eng A Struct Mater Properties Microstructure Process. 2011;528:6636–6641. 10.1016/j.msea.2011.05.028
  • Iler RK. Multilayers of colloidal particles. J. Colloid Interface Sci. 1966;21:569–594. 10.1016/0095-8522(66)90018-3
  • Decher G. Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science. 1997;277:1232–1237. 10.1126/science.277.5330.1232
  • Borges J, Rodrigues LC, Reis RL, et al. Layer-by-layer assembly of light-responsive polymeric multilayer systems. Adv. Funct. Mater. 2014;24:5624–5648. 10.1002/adfm.v24.36
  • Borges J, Mano JF. Molecular interactions driving the layer-by-layer assembly of multilayers. Chem Rev. 2014;114:8883–8942. 10.1021/cr400531v
  • Richardson JJ, Bjornmalm M, Caruso F. Multilayer assembly. technology-driven layer-by-layer assembly of nanofilms. Sci (New York, NY). 2015;348:2348–2491.
  • Caridade SG, Monge C, Gilde F, et al. Free-standing polyelectrolyte membranes made of chitosan and alginate. Biomacromolecules. 2013;14:1653–1660. 10.1021/bm400314s
  • Costa RR, Mano JF. Polyelectrolyte multilayered assemblies in biomedical technologies. Chem Soc Rev. 2014;43:3453–3479. 10.1039/c3cs60393h
  • Yang GJ, Yang XY, Zhang L, et al. Counterionic biopolymers-reinforced bioactive glass scaffolds with improved mechanical properties in wet state. Mater Lett. 2012;75:80–83. 10.1016/j.matlet.2012.01.122
  • Pavinatto A, Mercante LA, Leandro CS, et al. Layer-by-Layer assembled films of chitosan and multi-walled carbon nanotubes for the electrochemical detection of 17 alpha-ethinylestradiol. J. Electroanal Chem. 2015;755:215–220. 10.1016/j.jelechem.2015.08.002
  • Couto DS, Alves NM, Mano JF. Nanostructured multilayer coatings combining chitosan with bioactive glass nanoparticles. J. Nanosci. Nanotechnol. 2009;9:1741–1748. 10.1166/jnn.2009.389
  • Martins A, Reis RL, Neves NM. Electrospinning: processing technique for tissue engineering scaffolding. Int Mater Rev. 2008;53:257–274. 10.1179/174328008X353547
  • Teo WE, Ramakrishna S. A review on electrospinning design and nanofibre assemblies. Nanotechnology. 2006;17:R89–R106. 10.1088/0957-4484/17/14/R01
  • Frohbergh ME, Katsman A, Botta GR, et al. Electrospun hydroxyapatite-containing chitosan nanofibers crosslinked with genipin for bone tissue engineering. Biomaterials. 2012;33:9167–9178. 10.1016/j.biomaterials.2012.09.009
  • Silva CSR, Luz GM, Gamboa-martÍnez TC, et al. Poly(e-caprolactone) Electrospun scaffolds filled with nanoparticles. production and optimization according to Taguchi’s methodology. J. Macromol Sci Part B-Phys. 2014;53:781–799. 10.1080/00222348.2013.861304
  • Bai BY, Mi X, Xiang X, et al. Non-enveloped virus reduction with quaternized chitosan nanofibers containing graphene. Carbohydr Res. 2013;380:137–142. 10.1016/j.carres.2013.08.020
  • Hadi Najafabadi HH, Irani M, Roshanfekr Rad LR, et al. Removal of Cu2+, Pb2+ and Cr6+ from aqueous solutions using a chitosan/graphene oxide composite nanofibrous adsorbent. RSC Adv. 2015;5:16532–16539. 10.1039/C5RA01500F
  • Lee SJ, Heo DN, Moon JH, et al. Electrospun chitosan nanofibers with controlled levels of silver nanoparticles. Preparation, characterization and antibacterial activity. Carbohydr. Polym. 2014;111:530–537. 10.1016/j.carbpol.2014.04.026
  • Mahdieh ZM, Mottaghitalab V, Piri N, et al. Conductive chitosan/multi walled carbon nanotubes electrospun nanofiber feasibility. Korean J Chem Eng. 2012;29:111–119. 10.1007/s11814-011-0129-y
  • McMahon RE, Wang LN, Skoracki R, et al. Development of nanomaterials for bone repair and regeneration. J Biomed Mater Res Part B Appl Biomater. 2013;101B:387–397. 10.1002/jbm.b.v101b.2
  • Luz GM, Mano JF. Mineralized structures in nature: examples and inspirations for the design of new composite materials and biomaterials. Compos. Sci. Technol. 2010;70:1777–1788. 10.1016/j.compscitech.2010.05.013
  • Song J, Malathong V, Bertozzi CR. Mineralization of synthetic polymer scaffolds: a bottom-up approach for the development of artificial bone. J Am Chem Soc. 2005;127:3366–3372. 10.1021/ja043776z
  • Wu CJ, Gaharwar AK, Schexnailder PJ, et al. Development of biomedical polymer-silicate nanocomposites: a materials science perspective. Materials. 2010;3:2986–3005. 10.3390/ma3052986
  • Oliveira MB, Luz GM, Mano JF. A combinatorial study of nanocomposite hydrogels: on-chip mechanical/viscoelastic and pre-osteoblast interaction characterization. J Mater Chem B. 2014;2:5627–5638. 10.1039/C4TB00437J
  • Jayakumar R, Prabaharan M, Reis RL, et al. Graft copolymerized chitosan - present status and applications. Carbohydr. Polym. 2005;62:142–158. 10.1016/j.carbpol.2005.07.017
  • Correia CO, Leite Álvaro J. Mano JF. Chitosan/bioactive glass nanoparticles scaffolds with shape memory properties. Carbohydr. Polym. 2015;123:39–45. 10.1016/j.carbpol.2014.12.076
  • Van Thu V, Dung PT, Tam LT, et al. Biosensor based on nanocomposite material for pathogenic virus detection. Colloids Surf. B: Biointerfaces. 2014;115:176–181. 10.1016/j.colsurfb.2013.11.016
  • Singh A, Sinsinbar G, Choudhary M, et al. Graphene oxide-chitosan nanocomposite based electrochemical DNA biosensor for detection of typhoid. Sens. Actuator B-Chemc. 2013;185:675–684. 10.1016/j.snb.2013.05.014
  • Zhang LL, Han GQ, Liu Y, et al. Immobilizing haemoglobin on gold/graphene-chitosan nanocomposite as efficient hydrogen peroxide biosensor. Sens. Actuator B-Chem. 2014;197:164–171.
  • Song YH, Liu HY, Wang Y, et al. A glucose biosensor based on cytochrome c and glucose oxidase co-entrapped in chitosan- gold nanoparticles modified electrode. Anal. Methods. 2013;5:4165–4171. 10.1039/c3ay40399h
  • Fan JJ, Bi L, Wu T, et al. A combined chitosan/nano-size hydroxyapatite system for the controlled release of icariin. J. Mater. Sci. Mater. Med. 2012;23:399–407. 10.1007/s10856-011-4491-4
  • Pallela R, Venkatesan J, Janapala VR, et al. Biophysicochemical evaluation of chitosan-hydroxyapatite-marine sponge collagen composite for bone tissue engineering. J. Biomed. Mater. Res Part A. 2012;100A:486–495. 10.1002/jbm.a.v100a.2
  • Im O, Li J, Wang M, et al. Biomimetic three-dimensional nanocrystalline hydroxyapatite and magnetically synthesized single-walled carbon nanotube chitosan nanocomposite for bone regeneration. Int J Nanomedicine. 2012;7:2087–2099.
  • Depan D, Girase B, Shah JS, et al. Structure-process-property relationship of the polar graphene oxide-mediated cellular response and stimulated growth of osteoblasts on hybrid chitosan network structure nanocomposite scaffolds. Acta Biomater. 2011;7:3432–3445. 10.1016/j.actbio.2011.05.019
  • Yuan Q, Shah J, Hein S, et al. Controlled and extended drug release behavior of chitosan-based nanoparticle carrier. Acta Biomater. 2010;6:1140–1148. 10.1016/j.actbio.2009.08.027
  • Abou Taleb MF. Alkahtani A, Mohamed SK. Radiation synthesis and characterization of sodium alginate/chitosan/hydroxyapatite nanocomposite hydrogels: a drug delivery system for liver cancer. Polym Bull. 2015;72:725–742.
  • Justin R, Chen BQ. Strong and conductive chitosan-reduced graphene oxide nanocomposites for transdermal drug delivery. J Mater Chem B. 2014;2:3759–3770. 10.1039/c4tb00390j
  • Salcedo I, Sandri G, Aguzzi C, et al. Intestinal permeability of oxytetracycline from chitosan-montmorillonite nanocomposites. Colloids Surf B-Biointerfaces. 2014;117:441–448. 10.1016/j.colsurfb.2013.11.009
  • Axpe E, Bugnicourt L, Merida D, et al. Sub-nanoscale free volume and local elastic modulus of chitosan-carbon nanotube biomimetic nanocomposite scaffold-materials. J. Mater Chem B. 2015;3:3169–3176. 10.1039/C5TB00154D
  • Sayyar S, Murray E, Thompson BC, et al. Processable conducting graphene/chitosan hydrogels for tissue engineering. J Mater Chem B. 2015;3:481–490. 10.1039/C4TB01636J
  • Liverani L, Abbruzzese F, Mozetic P, et al. Electrospinning of hydroxyapatite-chitosan nanofibers for tissue engineering applications. Asia-Pacific J Chem Eng. 2014;9:407–414. 10.1002/apj.v9.3
  • Liu HH, Peng HJ, Wu Y, et al. The promotion of bone regeneration by nanofibrous hydroxyapatite/chitosan scaffolds by effects on integrin-BMP/Smad signaling pathway in BMSCs. Biomaterials. 2013;34:4404–4417. 10.1016/j.biomaterials.2013.02.048
  • Bellingeri R, Alustiza F, Picco N, et al. In Vitro toxicity evaluation of hydrogel-carbon nanotubes composites on intestinal cells. J. Appl. Polym. Sci. 2015;132:41370–41377.
  • Martins AM, Eng G, Caridade SG, et al. Electrically conductive chitosan/carbon scaffolds for cardiac tissue engineering. Biomacromolecules. 2014;15:635–643. 10.1021/bm401679q
  • Peng CC, Yang MH, Chiu WT, et al. Composite nano-titanium oxide–chitosan artificial skin exhibits strong wound-healing effect—an approach with anti-inflammatory and bactericidal kinetics. Macromol Biosci. 2008;8:316–327. 10.1002/(ISSN)1616-5195
  • Liu Y, Kim HI. Characterization and antibacterial properties of genipin-crosslinked chitosan/poly(ethylene glycol)/ZnO/Ag nanocomposites. Carbohydr. Polym. 2012;89:111–116.
  • Lu BG, Li T, Zhao HT, et al. Graphene-based composite materials beneficial to wound healing. Nanoscale. 2012;4:2978–2982. 10.1039/c2nr11958g
  • Aguzzi C, Sandri G, Bonferoni C, et al. Solid state characterisation of silver sulfadiazine loaded on montmorillonite/chitosan nanocomposite for wound healing. Colloids Surf B-Biointerfaces. 2014;113:152–157. 10.1016/j.colsurfb.2013.08.043
  • González-Campos JB, Mota-Morales JD, Kumar S, et al. New insights into the bactericidal activity of chitosan-Ag bionanocomposite: the role of the electrical conductivity. Colloids Surf B-Biointerfaces. 2013;111:741–746. 10.1016/j.colsurfb.2013.07.003
  • Lavorgna M, Attianese I, Buonocore GG, et al. MMT-supported Ag nanoparticles for chitosan nanocomposites: structural properties and antibacterial activity. Carbohydr. Polym. 2014;102:385–392. 10.1016/j.carbpol.2013.11.026
  • Lim HN, Huang NM, Loo CH. Facile preparation of graphene-based chitosan films: enhanced thermal, mechanical and antibacterial properties. J. Non-Cryst. Solids. 2012;358:525–530. 10.1016/j.jnoncrysol.2011.11.007
  • Sahoo NG, Pan YZ, Li L, et al. Nanocomposites for bone tissue regeneration. Nanomedicine. 2013;8:639–653. 10.2217/nnm.13.44
  • Alves NM, Leonor IB, Azevedo HS, et al. Designing biomaterials based on biomineralization of bone. J Mater Chem. 2010;20:2911–2921. 10.1039/b910960a
  • Olszta MJ, Cheng XG, Jee SS, et al. Bone structure and formation: a new perspective. Mater Sci Eng R. 2007;58:77–116. 10.1016/j.mser.2007.05.001
  • James R, Deng M, Laurencin CT, et al. Nanocomposites and bone regeneration. Front Mater Sci. 2011;5:342–357. 10.1007/s11706-011-0151-3
  • Duan B, Wang M, Zhou WY, et al. Three-dimensional nanocomposite scaffolds fabricated via selective laser sintering for bone tissue engineering. Acta Biomater. 2010;6:4495–4505. 10.1016/j.actbio.2010.06.024
  • Goulet JA, Senunas LE, DeSilva GL, et al. Autogenous iliac crest bone graft - Complications and functional assessment. Clin. Orthop. Relat. Res. 1997;339:76–81.
  • Mura S, Nicolas J, Couvreur P. Stimuli-responsive nanocarriers for drug delivery. Nat Mater. 2013;12:991–1003. 10.1038/nmat3776
  • Lima AC, Sher P, Mano JF. Production methodologies of polymeric and hydrogel particles for drug delivery applications. Expert Opin Drug Deliv. 2012;9:231–248. 10.1517/17425247.2012.652614
  • Goenka S, Sant V, Sant S. Graphene-based nanomaterials for drug delivery and tissue engineering. J. Control. Release. 2014;173:75–88. 10.1016/j.jconrel.2013.10.017
  • Kashyap M, Archana D, Semwal A, Dutta, J, Dutta PK. Chitin and chitosan for regenerative medicine. Springer: India; 2015; pp.261–277.
  • Prabaharan M, Mano JF. Chitosan-based particles as controlled drug delivery systems. Drug Deliv. 2005;12:41–57.
  • Justin R, Chen BQ. Characterisation and drug release performance of biodegradable chitosan-graphene oxide nanocomposites. Carbohydr. Polym. 2014;103:70–80. 10.1016/j.carbpol.2013.12.012
  • Mo YF, Wang HW, Liu JH, et al. Controlled release and targeted delivery to cancer cells of doxorubicin from polysaccharide-functionalised single-walled carbon nanotubes. J. Mater. Chem. B. 2015;3:1846–1855. 10.1039/C4TB02123A
  • Kataria K, Gupta A, Rath G, et al. In vivo wound healing performance of drug loaded electrospun composite nanofibers transdermal patch. Int. J. Pharm. 2014;469:102–110. 10.1016/j.ijpharm.2014.04.047
  • Guo S, DiPietro LA. Factors affecting wound healing. J Dent Res. 2010;89:219–229. 10.1177/0022034509359125
  • Abrigo M, McArthur SL, Kingshott P. Electrospun nanofibers as dressings for chronic wound care: advances, challenges, and future prospects. Macromol Biosci. 2014;14:772–792. 10.1002/mabi.201300561
  • Zhong SP, Zhang YZ, Lim CT. Tissue scaffolds for skin wound healing and dermal reconstruction. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2010;2:510–525. 10.1002/wnan.100
  • Gu SY, Wang ZM, Ren J, et al. Electrospinning of gelatin and gelatin/poly(l-lactide) blend and its characteristics for wound dressing. Mater Sci Eng C-Mater Biol Applications. 2009;29:1822–1828. 10.1016/j.msec.2009.02.010
  • Costa AMS, Mano JF. Highly robust hydrogels via a fast, simple and cytocompatible dual crosslinking-based process. Chem. Commun. 2015;51:15673–15676. 10.1039/C5CC05564D
  • Holzinger M, Le Goff A, Cosnier S. Nanomaterials for biosensing applications: a review. Front Chem. 2014;2:63.