858
Views
0
CrossRef citations to date
0
Altmetric
Optical, magnetic and electronic device materials

Size control and vacuum-ultraviolet fluorescence of nanosized KMgF3 single crystals prepared using femtosecond laser pulses

, , , , , , , , & show all
Pages 685-690 | Received 06 Jun 2016, Accepted 23 Sep 2016, Published online: 19 Oct 2016

References

  • Allan NL, Dayer MJ, Kulp DT, et al. Atomistic lattice simulations of the ternary fluorides AMF3 (A=Li, Na, K, Rb, Cs; M= Mg, Ca, Sr, Ba). J Mater Chem. 1991;1:1035–1039.10.1039/jm9910101035
  • Meijerink A. Spectroscopy and vibronic transitions of divalent europium in LiBaF3. J Lumin. 1993;55:125–138.10.1016/0022-2313(93)90033-J
  • Jasons JL, Krumins VJ, Rachko ZA, et al. Crossluminescence of KF and related compounds. Solid State Comm. 1988;67:183–185.10.1016/0038-1098(88)90960-X
  • Makhov VN, Khaidukov NM. Cross-luminescence peculiarities of complex KF-based fluorides. Nucl Instrum Methods Pys Res A. 1991;308:205–207.10.1016/0168-9002(91)90627-3
  • Cao M, Wang Y, Qi Y, et al. Synthesis and characterization of MgF2 and KMgF3 nanorods. J Solid State Chem. 2004;177:2205–2209.10.1016/j.jssc.2004.01.005
  • Kobayashi T, Mroczkowski S, Owen JF. Fluorescence lifetime and quantum efficiency for 5d -> 4f transitions in Eu2+ doped chloride and fluoride crystals. J Lumin. 1980;21:247–257.10.1016/0022-2313(80)90004-6
  • Sahnoun M, Zbiri M, Daul C, et al. Mater Chem Phys. 2005;91:185–191.10.1016/j.matchemphys.2004.11.019
  • Komar VK, Gektin AV, Ivanov NP, et al. Growth and study of properties of pure and rare-earth-doped KMgF3 crystals. J Cryst Growth. 1996;166:419–422.10.1016/0022-0248(96)00095-4
  • Horsch G, Paus HJ. A new color center laser on the basis of lead-doped KMgF3. Opt Comm. 1986;60:69–73.10.1016/0030-4018(86)90119-7
  • Masson NJML, Vink AP, Dorenbos P, et al. Ce3+ and Pr3+ 5d-energy levels in the (pseudo) perovskites KMgF3 and NaMgF3. J Lumin. 2003;101:175–183.10.1016/S0022-2313(02)00411-8
  • Yanagihara M, Yusop MZ, Tanemura M, et al. Vacuum ultraviolet field emission lamp utilizing KMgF3 thin film phosphor. APL Mater. 2014;2:046110.10.1063/1.4871915
  • Ledoux G, Guillois O, Porterat D, et al. Photoluminescence properties of silicon nanocrystals as a function of their size. Phys Rev B. 2000;62:15942.10.1103/PhysRevB.62.15942
  • Norris DJ, Efros AL, Rosen M, et al. Size dependence of exciton fine structure in CdSe quantum dots. Phys Rev B. 1996;53:16347.10.1103/PhysRevB.53.16347
  • Zeng H, Duan G, Li Y, et al. Blue luminescence of ZnO nanoparticles based on non-equilibrium processes: defect origins and emission controls. Adv Funct Mater. 2010;20:561–572.10.1002/adfm.v20:4
  • Bhargava RN, Gallagher D, Hong X, et al. Optical properties of manganese-doped nanocrystals of ZnS. Phys Rev Lett. 1994;72:416.10.1103/PhysRevLett.72.416
  • Kompe K, Borchert H, Storz J, et al. Green-emitting CePO4:Tb/LaPO4 core-shell nanoparticles with 70% photoluminescence quantum yield. Angew Chem Int Ed. 2003;42:5513–5516.10.1002/(ISSN)1521-3773
  • Seo WS, Jo HH, Lee K, et al. Preparation and optical properties of highly crystalline, colloidal, and size-controlled indium oxide nanoparticles. Adv Mater. 2003;15:795–797.10.1002/adma.200304568
  • Yang S, Kiraly B, Wang WY, et al. Fabrication and characterization of beaded SiC quantum rings with anomalous red spectral shift. Adv Mater. 2012;24:5598–5603.10.1002/adma.201202286
  • Fan JY, Wu XL, Chu PK. Chu. Low-dimensional SiC nanostructures: fabrication, luminescence, and electrical properties. Prog Mater Sci. 2006;51:983–1031.10.1016/j.pmatsci.2006.02.001
  • Efros AL, Efros AL. Interband absorption of light in a semiconductor sphere. Sov Phys Semicond. 1982;16:772–775.
  • Brus LE. A simple model for the ionization potential, electron affinity, and aqueous redox potentials of small semiconductor crystallites. J Chem Phys. 1983;79:5566.10.1063/1.445676
  • Yang S, WLiB Cao, Zeng H., et al. Origin of blue emission from silicon nanoparticles: direct transition and interface recombination. J Phys Chem C. 2011;115:21056–21062.10.1021/jp2075836
  • Walters RJ, Kalkman J, Polman A, et al. Photoluminescence quantum efficiency of dense silicon nanocrystal ensembles in SiO2. Phys Rev B. 2006;73:132302.10.1103/PhysRevB.73.132302
  • Jurbergs D, Rogojina E, Mangolini L, et al. Silicon nanocrystals with ensemble quantum yield exceeding 60%. Appl Phys Lett. 2006;88:233116.10.1063/1.2210788
  • Brus L. Electronic wave functions in semiconductor clusters: experiment and theory. J Phys Chem. 1986;90:2555–2560.10.1021/j100403a003
  • Wang Y, Herron N. Nanometer-sized semiconductor clusters; materials synthesis, quantum size effects, and photophysical properties. J Phys Chem. 1991;95:525–532.10.1021/j100155a009
  • Wang F, Han Y, Lim CS, et al. Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping. Nature. 2010;463:1061–1065.10.1038/nature08777
  • Stouwdam JW, Veggel FCJM. Near-infrared emission of redispersible Er3+, Nd3+, and Ho3+ doped LaF3 nanoparticles. Nano Lett. 2002;2:733–737.10.1021/nl025562q
  • Bender CM, Burlitch JM, Barber D, et al. Synthesis and fluorescence of neodymium-doped barium fluoride nanoparticles. Chem Mater. 2000;12:1969–1976.10.1021/cm9904741
  • Nandiyanto ABD, Iskandar F, Ogi T, et al. Nanometer to submicrometer magnesium fluoride particles with controllable morphology. Langmuir. 2010;26:12260–12266.10.1021/la101194w
  • Quan Z, Yang P, Li C, et al. Shape and phase-controlled synthesis of KMgF3 colloidal nanocrystals via microwave irradiation. J Phys Chem C. 2009;113:4018–4025.10.1021/jp810714k
  • Yang GW. Laser ablation in liquids: applications in the synthesis of nanocrystals. Prog Mater Sci. 2007;52:648–698.10.1016/j.pmatsci.2006.10.016
  • Sakiyama K, Koga K, Seto T, et al. Formation of size-selected Ni/NiO core-shell particles by pulsed laser ablation. J Phys Chem B. 2004;108:523–529.10.1021/jp035339x
  • Sasaki T, Terauchi S, Koshizaki N, et al. Preparation of nanoparticles by excimer laser ablation of calcium iron complex oxide. Ceram Process. 1997;43:2636.
  • Koch J, Bohlen A, Hergenroder R, et al. Particle size distributions and compositions of aerosols produced by near-IR femto- and nanosecond laser ablation of brass. J Anal At Spectrom. 2004;19:267–272.10.1039/B310512A
  • Dinh LN, Hayes SE, Wynne AE, et al. Properties of GaAs nanoclusters deposited by a femtosecond laser. J Mater Sci. 2002;37:3953–3958.10.1023/A:1019680111363
  • Yoshida T, Takeyama S, Yamada Y, et al. Nanometer-sized silicon crystallites prepared by excimer laser ablation in constant pressure inert gas. Appl Phys Lett. 1996;68:1772.10.1063/1.116662
  • Nichos WT, Malyavanatham G, Henneke DE, et al. Gas and pressure dependence for the mean size of nanoparticles produced by laser ablation of flowing aerosols. J Nanopart Res. 2000;2:141–145.10.1023/A:1010014004508
  • Tull BR, Carey JE, Sheehy MA, et al. Formation of silicon nanoparticles and web-like aggregates by femtosecond laser ablation in a background gas. Appl Phys A. 2006;83:341–346.10.1007/s00339-006-3502-7
  • Glover TE. Hydrodynamics of particle formation following femtosecond laser ablation. J Opt Soc Am B. 2003;20:125–131.10.1364/JOSAB.20.000125
  • Amoruso S, Bruzzese R, Spinelli N, et al. Generation of silicon nanoparticles via femtosecond laser ablation in vacuum. Appl Phys Lett. 2004;84:4502.10.1063/1.1757014
  • Bulgakov AV, Ozerov I, Marine W. Silicon clusters produced by femtosecond laser ablation: non-thermal emission and gas-phase condensation. Appl Phys A. 2004;79:1591–1594.10.1007/s00339-004-2856-y
  • Glover TE, Ackerman GD, Lee RW, et al. Probing particle synthesis during femtosecond laser ablation: initial phase transition kinetics. Appl Phys B. 2004;78:995–1000.10.1007/s00340-004-1449-y
  • Koshizaki N, Narazaki A, Sasaki T. Size distribution and growth mechanism of Co3O4 nanoparticles fabricated by pulsed laser deposition. Scripta Mater. 2001;44:1925–1928.10.1016/S1359-6462(01)00811-9
  • Werwa E, Seraphin AA, Chiu LA, et al. Synthesis and processing of silicon nanocrystallites using a pulsed laser ablation supersonic expansion method. Appl Phys Lett. 1994;64:1821.10.1063/1.111766
  • Goldys EM, Tomsia KD, Jinjun S, et al. Optical characterization of Eu-doped and undoped Gd2O3 nanoparticles synthesized by the hydrogen flame pyrolysis method. J Am Chem Soc. 2006;128:14498–14505.10.1021/ja0621602
  • Hakkinen H, Moseler M, Kostko O, et al. Symmetry and electronic structure of noble-metal nanoparticles and the role of relativity. Phys Rev Lett. 2004;93:093401.10.1103/PhysRevLett.93.093401
  • Zhou H, Cai W, Zhang L. Photoluminescence of indium-oxide nanoparticles dispersed within pores of mesoporous silica. Appl Phys Lett. 1999;75:495.10.1063/1.124427