1,729
Views
17
CrossRef citations to date
0
Altmetric
Bio-inspired and biomedical materials

Osteoblast and stem cell response to nanoscale topographies: a review

, , &
Pages 698-714 | Received 23 Feb 2016, Accepted 27 Sep 2016, Published online: 04 Nov 2016

References

  • Teixeira AI, Abrams GA, Bertics PJ, et al. Epithelial contact guidance on well-defined micro- and nanostructured substrates. J Cell Sci. 2003;116:1881–1892. 10.1242/jcs.00383. Epub 2003/04/15. PubMed PMID: 12692189; PubMed Central PMCID: PMCPMC1885893.
  • Yim EK, Leong KW. Significance of synthetic nanostructures in dictating cellular response. Nanomedicine. 2005;1:10–21. 10.1016/j.nano.2004.11.008. Epub 2007/02/13. PubMed PMID: 17292053.
  • Harrison RG. On the stereotropism of embryonic cells. Science. 1911;34:279–281. 10.2307/1637194.
  • Dalby MJ, Riehle MO, Johnstone H, et al. In vitro reaction of endothelial cells to polymer demixed nanotopography. Biomaterials. 2002;23:2945–2954. 10.1016/S0142-9612(01)00424-0.
  • Gallagher JO, McGhee KF, Wilkinson CDW, et al. Interaction of animal cells with ordered nanotopography. IEEE Trans Nanobioscience. 2002;1:24–28. 10.1109/TNB.2002.806918.
  • Berry CC, Campbell G, Spadiccino A, et al. The influence of microscale topography on fibroblast attachment and motility. Biomaterials. 2004;25:5781–5788. 10.1016/j.biomaterials.2004.01.029. Epub 2004/05/19. PubMed PMID: 15147824
  • Dalby MJ, Riehle MO, Johnstone HJ, et al. Polymer-demixed nanotopography: control of fibroblast spreading and proliferation. Tissue Eng. 2002;8:1099–1108. 10.1089/107632702320934191. Epub 2003/01/25. PubMed PMID: 12542955.
  • Vogel V, Sheetz M. Local force and geometry sensing regulate cell functions. Nat Rev Mol Cell Biol. 2006;7:265–275. 10.1038/nrm1890. Epub 2006/04/12. PubMed PMID: 16607289.
  • Dalby MJ, Berry CC, Riehle MO, et al. Attempted endocytosis of nano-environment produced by colloidal lithography by human fibroblasts. Exp Cell Res. 2004;295:387–394. 10.1016/j.yexcr.2004.02.004. Epub 2004/04/20. PubMed PMID: 15093738.
  • Kantawong F, Burchmore R, Gadegaard N, et al. Proteomic analysis of human osteoprogenitor response to disordered nanotopography. J R Soc Interface. 2009;6:1075–1086. 10.1098/rsif.2008.0447. Epub 2008/12/11. PubMed PMID: 19068473; PubMed Central PMCID: PMCPMC2827438.
  • Kantawong F, Burgess KE, Jayawardena K, et al. Whole proteome analysis of osteoprogenitor differentiation induced by disordered nanotopography and mediated by ERK signalling. Biomaterials. 2009;30:4723–4731. 10.1016/j.biomaterials.2009.05.040. Epub 2009/06/30. PubMed PMID: 19560200.
  • Dalby MJ, Yarwood SJ, Riehle MO, et al. Increasing fibroblast response to materials using nanotopography: morphological and genetic measurements of cell response to 13-nm-high polymer demixed islands. Exp Cell Res. 2002;276:1–9. 10.1006/excr.2002.5498. Epub 2002/04/30. PubMed PMID: 11978003.
  • Tilghman RW, Parsons JT. Focal adhesion kinase as a regulator of cell tension in the progression of cancer. Semin Cancer Biol. 2008;18:45–52. 10.1016/j.semcancer.2007.08.002. Epub 2007/10/12. PubMed PMID: 17928235; PubMed Central PMCID: PMCPMC2267763.
  • Dalby MJ, Riehle MO, Johnstone H, et al. Investigating the limits of filopodial sensing: a brief report using SEM to image the interaction between 10 nm high nano-topography and fibroblast filopodia. Cell Biol Int. 2004;28:229–236. 10.1016/j.cellbi.2003.12.004. Epub 2004/02/27. PubMed PMID: 14984750.
  • Lenhert S, Meier MB, Meyer U, et al. Osteoblast alignment, elongation and migration on grooved polystyrene surfaces patterned by Langmuir-Blodgett lithography. Biomaterials. 2005;26:563–570. 10.1016/j.biomaterials.2004.02.068. Epub 2004/07/28. PubMed PMID: 15276364.
  • Charest JL, Eliason MT, García AJ, et al. Combined microscale mechanical topography and chemical patterns on polymer cell culture substrates. Biomaterials. 2006;27:2487–2494. 10.1016/j.biomaterials.2005.11.022. Epub 2005/12/06. PubMed PMID: 16325902.
  • Kenar H, Köse GT, Hasirci V. Tissue engineering of bone on micropatterned biodegradable polyester films. Biomaterials. 2006;27:885–895. 10.1016/j.biomaterials.2005.07.001.
  • Hasenbein ME, Andersen TT, Bizios R. Micropatterned surfaces modified with select peptides promote exclusive interactions with osteoblasts. Biomaterials. 2002;23:3937–3942 Epub 2002/08/07. PubMed PMID: 12162326.10.1016/S0142-9612(02)00129-1
  • Dalby MJ, Di Silvio L, Davies GW, et al. Surface topography and HA filler volume effect on primary human osteoblasts in vitro. J Mater Sci Mat Med. 2000;11:805–810 .Epub 2004/09/07. PubMed PMID: 15348064.10.1023/A:1008957630020
  • McNamara LE, McMurray RJ, Biggs MJ, et al. Nanotopographical control of stem cell differentiation. J Tissue Eng. 2010;2010:120623. 10.4061/2010/120623. Epub 2011/02/26. PubMed PMID: 21350640; PubMed Central PMCID: PMCPMC3042612
  • Nauta AJ, Fibbe WE. Immunomodulatory properties of mesenchymal stromal cells. Blood. 2007;110:3499–3506. Epub 2007/08/01. PubMed PMID: 17664353. 10.1182/blood-2007-02-069716
  • Caplan AI. Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. J Cell Physiol. 2007;213:341–347. 10.1002/jcp.21200. Epub 2007/07/11. PubMed PMID: 17620285.
  • Guilak F, Cohen DM, Estes BT, et al. Control of stem cell fate by physical interactions with the extracellular matrix. Cell Stem Cell. 2009;5:17–26.10.1016/j.stem.2009.06.016
  • Davies JA. Extracellular matrix. eLS: John Wiley & Sons, Ltd; 2001.10.1038/npg.els.0001274
  • Gallant ND, García AJ. Model of integrin-mediated cell adhesion strengthening. J Biomech. 2007;40:1301–1309. 10.1016/j.jbiomech.2006.05.018. Epub 2006/07/11. PubMed PMID: 16828104.
  • Michaelis S, Robelek R, Wegener J. Studying cell-surface interactions in vitro: a survey of experimental approaches and techniques. In: Kasper C, Witte F, Pörtner R, editors. Tissue engineering III: cell - surface interactions for tissue culture. Berlin, Heidelberg: Springer Berlin Heidelberg; 2012. p. 33–66.
  • Ziats NP, Miller KM, Anderson JM. In vitro and in vivo interactions of cells with biomaterials. Biomaterials. 1988;9:5–13. Epub 1988/01/01. PubMed PMID: 3280039.10.1016/0142-9612(88)90063-4
  • Bongrand P. Specific and nonspecific interactions in cell biology. J Dispers Sci Technol. 1998;19:963–978. 10.1080/01932699808913226.
  • Pierres A, Benoliel AM, Bongrand P. Cell fitting to adhesive surfaces: a prerequisite to firm attachment and subsequent events. Eur Cell Mater. 2002;3:31–45. Epub 2003/10/17. PubMed PMID: 14562252.
  • Arnaout MA, Mahalingam B, Xiong JP. Integrin structure, allostery, and bidirectional signaling. Annu Rev Cell Dev Biol. 2005;21:381–410. 10.1146/annurev.cellbio.21.090704.151217. Epub 2005/10/11. PubMed PMID: 16212500.
  • Hynes RO. Integrins: versatility, modulation, and signaling in cell adhesion. Cell. 1992;69:11–25. Epub 1992/04/03. PubMed PMID: 1555235.10.1016/0092-8674(92)90115-S
  • Krissansen GW, Danen EHJ. Integrins: signalling and disease. eLS: John Wiley & Sons, Ltd; 2001.
  • Wozniak MA, Modzelewska K, Kwong L, et al. Focal adhesion regulation of cell behavior. Biochim Biophys Acta. 2004;1692:103–119. 10.1016/j.bbamcr.2004.04.007. Epub 2004/07/13. PubMed PMID: 15246682.
  • Hayes JS, Czekanska EM, Richards RG. The cell-surface interaction. In: Kasper C, Witte F, Pörtner R, editors. Tissue engineering III: cell - surface interactions for tissue culture. Berlin, Heidelberg: Springer Berlin Heidelberg; 2012. p. 1–31.
  • Kress S, Neumann A, Weyand B, et al. Stem cell differentiation depending on different surfaces. In: Kasper C, Witte F, Pörtner R, editors. Tissue engineering III: cell - surface interactions for tissue culture. Berlin, Heidelberg: Springer Berlin Heidelberg; 2012. p. 263–283.
  • Zinger O, Anselme K, Denzer A, et al. Time-dependent morphology and adhesion of osteoblastic cells on titanium model surfaces featuring scale-resolved topography. Biomaterials. 2004;25:2695–2711. 10.1016/j.biomaterials.2003.09.111. Epub 2004/02/14. PubMed PMID: 14962549.
  • Dalby MJ. Topographically induced direct cell mechanotransduction. Med Eng Phys. 2005;27:730–742. 10.1016/j.medengphy.2005.04.005. Epub 2005/06/01. PubMed PMID: 15921949.
  • Maniotis AJ, Chen CS, Ingber DE. Demonstration of mechanical connections between integrins, cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure. Proc Natl Acad Sci U S A. 1997;94:849–854. PubMed PMID: PMC19602.10.1073/pnas.94.3.849
  • Ge C, Xiao G, Jiang D, et al. Critical role of the extracellular signal-regulated kinase-MAPK pathway in osteoblast differentiation and skeletal development. J Cell Biol. 2007;176:709–718. 10.1083/jcb.200610046. Epub 2007/02/28. PubMed PMID: 17325210; PubMed Central PMCID: PMCPMC2064027.
  • Krause A, Cowles EA, Gronowicz G. Integrin-mediated signaling in osteoblasts on titanium implant materials. J Biomed Mater Res. 2000;52:738–747 Epub 2000/10/18. PubMed PMID: 11033557.10.1002/(ISSN)1097-4636
  • Schulze M, Tobiasch E. Artificial scaffolds and mesenchymal stem cells for hard tissues. In: Kasper C, Witte F, Pörtner R, editors. Tissue engineering III: cell - surface interactions for tissue culture. Berlin, Heidelberg: Springer Berlin Heidelberg; 2012. p. 153–194.
  • Lim JY, Hansen JC, Siedlecki CA, et al. Human foetal osteoblastic cell response to polymer-demixed nanotopographic interfaces. J R Soc Interface. 2005;2:97–108.10.1098/rsif.2004.0019
  • Sjöström T, Dalby MJ, Hart A, et al. Fabrication of pillar-like titania nanostructures on titanium and their interactions with human skeletal stem cells. Acta Biomater. 2009;5:1433–1441. 10.1016/j.actbio.2009.01.007. Epub 2009/02/12. PubMed PMID: 19208503.
  • Lamers E, van Horssen R, te Riet J, et al. The influence of nanoscale topographical cues on initial osteoblast morphology and migration. Eur Cell Mater. 2010;20:329–343. Epub 2010/11/10. PubMed PMID: 21061239.
  • Biggs MJ, Richards RG, Dalby MJ. Nanotopographical modification: a regulator of cellular function through focal adhesions. Nanomedicine. 2010;6:619–633. 10.1016/j.nano.2010.01.009. Epub 2010/02/09. PubMed PMID: 20138244; PubMed Central PMCID: PMCPMC2965469.
  • Lim JY, Dreiss AD, Zhou Z, et al. The regulation of integrin-mediated osteoblast focal adhesion and focal adhesion kinase expression by nanoscale topography. Biomaterials. 2007;28:1787–1797. 10.1016/j.biomaterials.2006.12.020. Epub 2007/01/16. PubMed PMID: 17218005.
  • Dalby MJ, McCloy D, Robertson M, et al. Osteoprogenitor response to semi-ordered and random nanotopographies. Biomaterials. 2006;27:2980–2987. 10.1016/j.biomaterials.2006.01.010. Epub 2006/01/31. PubMed PMID: 16443268.
  • Engler AJ, Sen S, Sweeney HL, et al. Matrix elasticity directs stem cell lineage specification. Cell. 2006;126:677–689. 10.1016/j.cell.2006.06.044. Epub 2006/08/23. PubMed PMID: 16923388.
  • Dalby MJ, Gadegaard N, Tare R, et al. The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder. Nat Mater. 2007;6:997–1003. http://www.nature.com/nmat/journal/v6/n12/suppinfo/nmat2013_S1.html.10.1038/nmat2013
  • McMurray RJ, Gadegaard N, Tsimbouri PM, et al. Nanoscale surfaces for the long-term maintenance of mesenchymal stem cell phenotype and multipotency. Nat Mater. 2011;10:637–644. 10.1038/nmat3058. Epub 2011/07/19. PubMed PMID: 21765399.
  • Huang J, Gräter SV, Corbellini F, et al. Impact of order and disorder in RGD nanopatterns on cell adhesion. Nano Lett. 2009;9:1111–1116. 10.1021/nl803548b. Epub 2009/02/12. PubMed PMID: 19206508; PubMed Central PMCID: PMCPMC2669488.
  • Hart A, Gadegaard N, Wilkinson CD, et al. Osteoprogenitor response to low-adhesion nanotopographies originally fabricated by electron beam lithography. J Mater Sci Mater Med. 2007;18:1211–1218. 10.1007/s10856-007-0157-7. Epub 2007/02/06. PubMed PMID: 17277969.
  • Teixeira AI, Nealey PF, Murphy CJ. Responses of human keratocytes to micro- and nanostructured substrates. J Biomed Mater Res. 2004;71:369–376. 10.1002/jbm.a.30089. Epub 2004/10/08. PubMed PMID: 15470741.
  • Dalby MJ, McCloy D, Robertson M, et al. Osteoprogenitor response to defined topographies with nanoscale depths. Biomaterials. 2006;27:1306–1315. 10.1016/j.biomaterials.2005.08.028.
  • Kirkham G, Cartmell S. Genes and proteins involved in the regulation of osteogenesis. In: Ashammakhi N, Reis R, Chiellini E, editors. Topics in tissue engineering. Vol. 3; 2007.
  • Lian J, Stewart C, Puchacz E, et al. Structure of the rat osteocalcin gene and regulation of vitamin D-dependent expression. Proc Natl Acad Sci U S A. 1989;86:1143–1147. Epub 1989/02/01. PubMed PMID: 2784002; PubMed Central PMCID: PMCPMC286642. 10.1073/pnas.86.4.1143
  • Ryoo HM, Hoffmann HM, Beumer T, et al. Stage-specific expression of Dlx-5 during osteoblast differentiation: involvement in regulation of osteocalcin gene expression. Mol Endocrinol. 1997;11:1681–1694. 10.1210/mend.11.11.0011. Epub 1997/11/05. PubMed PMID: 9328350.
  • Hunter GK, Goldberg HA. Nucleation of hydroxyapatite by bone sialoprotein. Proc Natl Acad Sci U S A. 1993;90:8562–8565. Epub 1993/09/15. PubMed PMID: 8397409; PubMed Central PMCID: PMCPMC47397.10.1073/pnas.90.18.8562
  • Chen D, Zhao M, Mundy GR. Bone morphogenetic proteins. Growth Factors. 2004;22:233–241. 10.1080/08977190412331279890. Epub 2004/12/29. PubMed PMID: 15621726.
  • Friedman MS, Long MW, Hankenson KD. Osteogenic differentiation of human mesenchymal stem cells is regulated by bone morphogenetic protein-6. J Cell Biochem. 2006;98:538–554. 10.1002/jcb.20719. Epub 2005/12/01. PubMed PMID: 16317727.
  • Jiang Y, Vaessen B, Lenvik T, et al. Multipotent progenitor cells can be isolated from postnatal murine bone marrow, muscle, and brain. Exp Hematol. 2002;30:896–904 Epub 2002/08/06. PubMed PMID: 12160841.10.1016/S0301-472X(02)00869-X
  • Metcalf D. The unsolved enigmas of leukemia inhibitory factor. Stem Cells. 2003;21:5–14. 10.1634/stemcells.21-1-5. Epub 2003/01/17. PubMed PMID: 12529546.
  • Tsutsumi S, Shimazu A, Miyazaki K, et al. Retention of multilineage differentiation potential of mesenchymal cells during proliferation in response to FGF. Biochem Biophys Res Commun. 2001;288:413–419. 10.1006/bbrc.2001.5777. Epub 2001/10/19. PubMed PMID: 11606058.
  • Zaragosi LE, Ailhaud G, Dani C. Autocrine fibroblast growth factor 2 signaling is critical for self-renewal of human multipotent adipose-derived stem cells. Stem Cells. 2006;24:2412–2419. 10.1634/stemcells.2006-0006. Epub 2006/07/15. PubMed PMID: 16840552.
  • Kléber M, Sommer L. Wnt signaling and the regulation of stem cell function. Curr Opin Cell Biol. 2004;16:681–687. 10.1016/j.ceb.2004.08.006. Epub 2004/11/09. PubMed PMID: 15530781.
  • Boland GM, Perkins G, Hall DJ, et al. Wnt 3a promotes proliferation and suppresses osteogenic differentiation of adult human mesenchymal stem cells. J Cell Biochem. 2004;93:1210–1230. 10.1002/jcb.20284. Epub 2004/10/16. PubMed PMID: 15486964.
  • Whitesides GM, Mathias JP, Seto CT. Molecular self-assembly and nanochemistry: a chemical strategy for the synthesis of nanostructures. Science. 1991;254:1312–1319 Epub 1991/11/29. PubMed PMID: 1962191.10.1126/science.1962191
  • Cui Z. Nanofabrication: principles, capabilities and limits. Springer, US; 2008.10.1007/978-0-387-75577-9
  • Gates BD, Xu Q, Stewart M, et al. New approaches to nanofabrication: molding, printing, and other techniques. Chem Rev. 2005;105:1171–1196. 10.1021/cr030076o. Epub 2005/04/14. PubMed PMID: 15826012.
  • Yang Y, Leong KW. Nanoscale surfacing for regenerative medicine. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2010;2:478–495. 10.1002/wnan.74. Epub 2010/08/31. PubMed PMID: 20803682.
  • Rauscher MD, Boyne A, Dregia SA, et al. Self-assembly of pseudoperiodic arrays of nanoislands on YSZ-(001). Adv Mater. 2008;20:1699–1705. 10.1002/adma.200701383.
  • Ansari HM, Dixit V, Zimmerman LB, et al. Self assembly of nanoislands on YSZ-(001) surface: a mechanistic approach toward a robust process. Nano Lett. 2013;13:2116–2121. 10.1021/nl4005282.
  • Zimmerman LB, Rauscher MD, Ellis J, et al. Nanoimprinting using self-assembled ceramic nanoislands. Nanotechnology. 2010;21:045304. 10.1088/0957-4484/21/4/045304. Epub 2009/12/17. PubMed PMID: 20009202.
  • Parikh KS, Rao SS, Ansari HM, et al. Ceramic nanopatterned surfaces to explore the effects of nanotopography on cell attachment. Mater Sci Eng C. 2012;32:2469–2475. 10.1016/j.msec.2012.07.028.
  • Curtis A, Wilkinson C. Nantotechniques and approaches in biotechnology. Trends Biotechnol. 2001;19:97–101. Epub 2001/02/17. PubMed PMID: 11179802.10.1016/S0167-7799(00)01536-5
  • Nerem RM. Tissue engineering: confronting the transplantation crisis. Proc Inst Mech Eng H. 2000;214:95–99 . Epub 2000/03/16. PubMed PMID: 10718054.10.1243/0954411001535273
  • Flemming RG, Murphy CJ, Abrams GA, et al. Effects of synthetic micro- and nano-structured surfaces on cell behavior. Biomaterials. 1999;20\:573–588 Epub 1999/04/23. PubMed PMID: 10213360.10.1016/S0142-9612(98)00209-9
  • Wilkinson CDW. Nanostructures in biology. Microelectron Eng. 1995;27:61–65. 10.1016/0167-9317(94)00056-Z.
  • Yim EK, Reano RM, Pang SW, et al. Nanopattern-induced changes in morphology and motility of smooth muscle cells. Biomaterials. 2005;26:5405–5413. 10.1016/j.biomaterials.2005.01.058. Epub 2005/04/09. PubMed PMID: 15814139; PubMed Central PMCID: PMCPMC2376810.