4,610
Views
46
CrossRef citations to date
0
Altmetric
Bio-inspired and biomedical materials

Glucose-responsive hydrogel electrode for biocompatible glucose transistor

&
Pages 26-33 | Received 15 Jul 2016, Accepted 02 Nov 2016, Published online: 09 Jan 2017

References

  • Tanaka T. Collapse of gels and the critical endpoint. Phys. Rev. Lett. 1978;40:820–823.10.1103/PhysRevLett.40.820
  • Langer RS, Peppas NA. Present and future applications of biomaterials in controlled drug delivery systems. Biomater. 1981;2:201–214.10.1016/0142-9612(81)90059-4
  • Supersaxo A, Hein WR, Steffen H. Mixed micelles as a proliposomal, lymphotropic drug carrier. Pharmaceut Res. 1991;08:1286–1291.10.1023/A:1015807913934
  • La SB, Okano T, Kataoka K. Preparation and characterization of the micelle-forming polymeric drug indomethacin-incorporated poly(ethylene oxide)-poly(beta-benzyl L-aspartate) block copolymer micelles. J Pharm. Sci. 1996;85:85–90.10.1021/js950204r
  • Updike SJ, Hicks GP. The enzyme electrode. Nature. 1967;214:986–988.10.1038/214986a0
  • Kino S, Omori S, Katagiri T, et al. Hollow optical-fiber based infrared spectroscopy for measurement of blood glucose level by using multi-reflection prism. Biomed Opt Exp. 2016;7:701–708.10.1364/BOE.7.000701
  • Iguchi S, Kudo H, Saito T, et al. A flexible and wearable biosensor for tear glucose measurement. Biomed Microdevices. 2007;9:603–609.10.1007/s10544-007-9073-3
  • Feng J, Siu VS, Roelke A, et al. Nanoscale plasmonic interferometers for multispectral, high-throughput biochemical sensing. Nano Lett. 2012;12:602–609.10.1021/nl203325s
  • Moyer J, Wilson D, Finkelshtein I, et al. Correlation between sweat glucose and blood glucose in subjects with diabetes. Diabetes Technol Ther. 2012;14:398–402.10.1089/dia.2011.0262
  • Sakata T, Ihara M, Makino I, et al. Open sandwich-based immuno-transistor for label-free and noncompetitive detection of low molecular weight antigen. Anal Chem. 2009;81:7532–7537.10.1021/ac900457m
  • Kajisa T, Sakata T. Fundamental properties of phenylboronic-acid-coated gate field-effect transistor for saccharide sensing. ChemElectroChem. 2014;1:1647–1655.10.1002/celc.v1.10
  • Barker SA, Chopra AK, Hatt BW, et al. The interaction of areneboronic acids with monosaccharides. Carbohydr Res. 1973;26:33–40.10.1016/S0008-6215(00)85019-3
  • Bouriotis V, Galpin IJ, Dean PDG. Applications of immobilised phenylboronic acids as supports for group-specific ligands in the affinity chromatography of enzymes. J Chromatography. 1981;210:267–278.10.1016/S0021-9673(00)97837-3
  • Ozdemir A, Tuncel A. Boronic acid-functionalized HEMA-based gels for nucleotide adsorption. J Appl Polym Sci. 2000;78:268–277.10.1002/(ISSN)1097-4628
  • Štol M, Smetana K, Korbelár̄ P, et al. Poly(HEMA)-collagen composite as a biomaterial for hard tissue replacement. Clin Mater. 1993;13:19–20.10.1016/0267-6605(93)90084-K
  • Aoki T, Nagao Y, Sanui K, et al. Glucose-Sensitive lower critical solution temperature changes of copolymers composed of N-isopropylacrylamide and phenylboronic acid moieties. Polym J. 1996;28:371–374.10.1295/polymj.28.371
  • Hisamitsu I, Kataoka K, Okano T, et al. Glucose-responsive gel from phenylborate polymer and poly(vinyl alcohol): Prompt response at physiological pH through the interaction of borate with amine group in the gel. Pharmaceutical Res. 1997;14:289–293.10.1023/A:1012033718302
  • Soundararajan S, Badawi M, Kohlrust CM, et al. Boronic acids for affinity chromatography: spectral methods for determinations of ionization and diol-binding constants. Anal Biochem. 1989;178:125–134.10.1016/0003-2697(89)90367-9
  • Yan J, Springsteen G, Deeter S, et al. The relationship among pKa, pH, and binding constants in the interactions between boronic acids and diols - it is not as simple as it appears. Tetrahedron. 2004;60:11205–11209.10.1016/j.tet.2004.08.051
  • Flory PI. Thermodynamics of high polymer solutions. J Chem Phys. 1942;10:51–61.10.1063/1.1723621
  • Huggins ML. Some properties of solutions of long-chain compounds. J Phys Chem. 1942;46:151–158.10.1021/j150415a018
  • Belle JT, Bishop DK, Vossler SR, et al. A disposable tear glucose biosensor--part 2: system integration and model validation. J Diabetes Sci Technol. 2010;4:307–311.10.1177/193229681000400210
  • Kaiser H. Die Berechnung der Nachweisempfindlichkeit. Spectrochim Acta. 1947;3:40–67.10.1016/0371-1951(47)80005-0
  • Tighe BJ, Bright AM. The Composition and interfacial properties of tears, tear substitutes and tear models. J Br Contact Lens Assoc. 1993;16:57–66.
  • Sariri R, Ghafoori H. Tear proteins in health, disease, and contact lens wear. Biochem. 2008;73:381–392.
  • Katchalski E, Benjamin GS, Gross V. The availability of the disulfide bonds of human and bovine serum albumin and of bovine γ-globulin to reduction by thioglycolic acid. J Am Chem Soc. 1957;79:4096–4099.10.1021/ja01572a034
  • Williams DF, Askill IN, Smith R. Protein adsorption and desorption phenomena on clean metal surfaces. J Biomed Mater Res. 1985;19:313–320.10.1002/(ISSN)1097-4636
  • Taniguchi I, Toyosawa K, Yamaguchi H, et al. Reversible electrochemical reduction and oxidation of cytochrome c at a bis (4-pyridyl) disulphide-modified gold electrode. J Chem Soc Chem Comm. 1982:1032–1033.10.1039/c39820001032
  • Silin V, Weetall H, Vanderah DJ. SPR studies of the nonspecific adsorption kinetics of human IgG and BSA on gold surfaces modified by self-assembled monolayers (SAMs). J Colloid Interface Sci. 1997;185:94–103.10.1006/jcis.1996.4586
  • Hayashi T, Tanaka Y, Koide Y, et al. Mechanism underlying bioinertness of self-assembled monolayers of oligo(ethyleneglycol)-terminated alkanethiols on gold: protein adsorption, platelet adhesion, and surface forces. Phys Chem Chem Phys. 2012;14:10196–10206.10.1039/c2cp41236e