2,221
Views
27
CrossRef citations to date
0
Altmetric
Optical, magnetic and electronic device materials

A new material platform of Si photonics for implementing architecture of dense wavelength division multiplexing on Si bulk wafer

, , , , , , , , & show all
Pages 283-293 | Received 20 Nov 2016, Accepted 27 Feb 2017, Published online: 13 Apr 2017

References

  • Kimerling LC, Kwong DL, Wada K. Scaling computation with silicon photonics. MRS Bull. 2014;39:687. 10.1557/mrs.2014.165
  • Yamada K, Tsuchizawa T, Nishi H, et al. High-performance silicon photonics technology for telecommunications applications. Sci Technol Adv Mater. 2014;15:024603. 10.1088/1468-6996/15/2/024603
  • Chaisakul P, Marris-Morini D, Rouifed MS, et al. Recent progress in GeSi electro-absorption modulators. Sci Technol Adv Mater. 2014;15:014601. 10.1088/1468-6996/15/1/014601
  • Shoji Y, Mizumoto T. Magneto-optical non-reciprocal devices in silicon photonics. Sci Technol Adv Mater. 2014;15:014602. 10.1088/1468-6996/15/1/014602
  • Ye H, Yu J. Germanium epitaxy on silicon. Sci Technol Adv Mater. 2014;15:024601. 10.1088/1468-6996/15/2/024601
  • Baba T, Nguyen HC, Yazawa N, et al. Slow-light Mach-Zehnder modulators based on Si photonic crystals. Sci Technol Adv Mater. 2014;15:024602. 10.1088/1468-6996/15/2/024602
  • Wada K, Kimerling L-C. Photonics and electronics with germanium. Weinheim: Wiley, 2015.
  • Kimerling, LC. Photons to the rescue: microelectronics becomes microphotonics. ECS Interface. 2000;9(2): 15–20.
  • Hamann HF, Weger A, Lacey JA, et al. “Hotspot-Limited Microprocessors: direct temperature and power distribution measurements”. IEEE J. Solid-State Circuits. 2007;42(1):56–65. 10.1109/JSSC.2006.885064
  • Vlasov Y. private communication.
  • Manolatou C, Haus HA. Passive components for dense optical integration. New York: Springer Science-Business Media, LLC; 2002. p. 1. 10.1007/978-1-4615-0855-7
  • Doerr CR, Chen L, Buhl LL, et al. Eight-Channel SiO2 /Si3N4/Si/Ge CWDM receiver. IEEE Photonics Technol Lett. 2011;23(17):1201–1203. 10.1109/LPT.2011.2158091
  • Zhang, Z, Yako, M, Ju K, et al. A silicon nitride platform by physical vapor deposition for dense wavelength division multiplexing on chip. IEEE Group Four Photonics. 2014, ThP25.
  • Gosh G. Handbook of thermo-optic coefficients of optical materials with applications. San Diego: Academic Press; 1998.
  • Arbabi A, Goddard LL. Measurements of the refractive indices and thermo-optic coefficients of Si3N4 and SiO(x) using micro ring resonances. Opt. Lett. 2013;38:3878–3881. 10.1364/OL.38.003878
  • Stutius W, Streifer W. Silicon nitride films on silicon for optical waveguides. Appl Optics. 1977;16(12):3218–3222. 10.1364/AO.16.003218
  • Soref, RA, Larenzo, JP. All-silicon active and passive guided-wave components for 1.3 and 1.6 μm, IEEE J Quant Electron. 1986;22(6):873–879.
  • Dai D, Wang Z, Bauters JF, et al. Low-loss Si3N4 arrayed-waveguide grating (de)multiplexer using nano-core optical waveguides”. Opt. Express. 2011;19(15):14130. 10.1364/OE.19.014130
  • Barwicz T, Popovic MA, Rakich PT, et al. Microring-resonator-based add-drop filters in SiN: fabrication and analysis. Opt. Express. 2004;12(7):1437–1442. 10.1364/OPEX.12.001437
  • Kimerling LC, Negro L, Saini, S, et al. Monolithic silicon microphotonics”. Appl Phys. 2004;94:89–121. 10.1007/b11504
  • Melchiorri M, Daldosso N, Sbrana F, et al. Propagation losses of silicon nitride waveguides in the near-infrared range. Appl Phys Lett. 2005;86:121111. 10.1063/1.1889242
  • Sherwood-Droz N, Gondarenko A, Lipson M. Scalable 3D dense integration of photonics on bulk silicon. Opt Express. 2011;19:17761.
  • Li Q, Eftekhar AA, Sodagar M, et al. Vertical integration of high-Q silicon nitride microresonators into silicon-on-insulator platform. Opt Express. 2013;21(15):18236. 10.1364/OE.21.018236
  • Romero-García S, Merget F, Zhong F, et al. Silicon nitride CMOS-compatible platform for integrated photonics applications at visible wavelengths. Opt Express. 2013;21(12):14036. 10.1364/OE.21.014036
  • Zanatta AR, Gallo IB. The thermo optic coefficient of amorphous SiN films in the near-infrared and visible regions and its experimental determination. Appl. Phys. Express. 2013;6:042402. 10.7567/APEX.6.042402
  • Okazaki, K, N, Hidetaka, Tsuchizawa, T, et al, Optical coupling between SiOxNy waveguide and Ge mesa structures for bulk-Si photonics platform. IEEE Group Four Photonics. 2015;WP43:122
  • Doris KTQian Wang, N, Wang, T, et al. Exploring high refractive index silicon-rich nitride films by low-temperature inductively coupled plasma chemical vapor deposition and applications for integrated waveguides”. ACS Appl Mater Interfaces. 2015;7:21884.
  • Sparacin, D. Process and design techniques for low loss integrated silicon photonics Ph. D thesis. Massachusetts Institute of Technology; 2000.
  • del Giudice M, Bruno F, Cicinelli T, et al. Structural and optical properties of silicon oxynitride on silicon planar waveguides. Appl. Optics. 1990;29(24):3489. 10.1364/AO.29.003489
  • Kim JH, Chung KW. Microstructure and properties of silicon nitride thin films deposited by reactive bias magnetron sputtering. J Appl Phys. 1998;83:5831. 10.1063/1.367440
  • Sandland, J Sputtered silicon oxynitride for microphotonics: materials study Ph. D thesis. Massachusetts Institute of Technology; 2005.
  • Chen L, Doerr CR, Buhl L, et al. Monolithically integrated 40-wavelength demultiplexer and photodetector array on silicon. IEEE Photonics Technol. Lett. 2011;23(13):869–871. 10.1109/LPT.2011.2141128
  • Martens D, Subramanian AZ, Pathak S, et al. Compact silicon nitride arrayed waveguide gratings for very near-infrared wavelengths. IEEE Photonics Technol Lett. 2015;137:2702.
  • Gai X, Yu Y, Kuyken B, et al. Nonlinear absorption and refraction in crystalline silicon in the mid-infrared Laser. Photon Rev. 2013;7:1054. 10.1002/lpor.201300103
  • Komma J, Schwarz C, Hofmann G, et al. Thermo-optic coefficient of silicon at 1550 nm and cryogenic temperatures. Appl Phys Lett. 2012;104:1905.
  • Raghunathan V, Ye WN, Hu H, et al. Athermal operation of Silicon waveguides: spectral, second order and footprint dependencies. Opt Express. 2010;18:17631. 10.1364/OE.18.017631
  • Bhaumik, R. Bhatt, S. Ganesamoorthy, A, et al. Temperature- dependent index of refraction of monoclinic Ga2O3 single crystal. Appl. Optics. 2011;50(31):6006. 10.1364/AO.50.006006
  • Robertson J. Band offsets of wide-band-gap oxides and implications for future electronic devices. J Vac Sci Technol. 2000;18(3):1785.10.1116/1.591472
  • Elalamy Z, Drouard E, Govern T, et al. GThermo-optical coefficients of sol–gel ZrO2 thin films. Opt. Communications. 2004;235:365–372. 10.1016/j.optcom.2004.02.043
  • Tanner C, Geisinger K, Wusirika R. Temperature and wavelength dependence of refractive index of zircon and hafnon. Opt Mater. 2004;26:305–311. 10.1016/j.optmat.2003.12.008
  • Chu AK, Lin HC, Cheng WH. Temperature dependence of refractive index of Ta2O5 Dielectric Films. J Electron Mater. 1997;26(8):889–892. 10.1007/s11664-997-0269-3
  • Charles H. Lange, D Duncan, D, Temperature coefficient of refractive index for candidate optical windows. Proc. SPIE 1326, Window and Dome Technologies and Materials II. 1990;71:12–15. 10.1117/12.22483.
  • Liu J, Sun X, Camacho-Aguilera R, et al. Ge-on-Si laser operating at room temperature. Opt. Lett. 2010;35(5):679–681. 10.1364/OL.35.000679
  • Camacho-Aguilera RE, Cai Y, Patel N, et al. An electrically pumped germanium laser”. Opt. Express. 2012;20(10):11316. 10.1364/OE.20.011316
  • Koerner R, Oehme M, Gollhofer M, et al. Electrically pumped lasing from Ge Fabry-Perot resonators on Si. Opt. Express. 2015;23(11):14815. 10.1364/OE.23.014815
  • Holzwarth CW, Orcutt JS, Li H, et al. OSA Conference on Laser and ElectroOptics/Quantum electronics and laser science, Paper# CThKK5, 2008.
  • Batten C, Joshi A, Orcutt J, et al. Building manycore processor-to-DRAM networks with monolithic silicon photonics. 16th IEEE Symposium on High Performance Interconnects; 2008. p. 21.
  • Orcutt JS, Khilo A, Holzwarth CW, et al. “Nanophotonic integration in state-of-the-art CMOS foundries. Opt. Express. 2011;19:2335.
  • Lee BS, Cho KS, Shin YH, et al. Integration of photonic circuits with electronics on bulk-Si platform. IEEE Group Four Photonics. 2013;WA1.
  • Hung S-C, Lin S-J, Chao J-J, et al. Fabrication of crystalline Si waveguides on (1 0 0) bulk Si substrate using laser reformation method. J. Lightwave Technol. 2013;31:3368. 10.1109/JLT.2013.2283216
  • Sun C, Georgas M, Orcutt J, et al. A monolithically-integrated chip-to-chip optical link in bulk CMOS. IEEE J Sol-Stat Circuits. 2015;50(4):828–844. 10.1109/JSSC.2014.2382101
  • Kim G, Park H, Joo J, et al. Single-chip photonic transceiver based on bulk-silicon, as a chip level photonic I/O platform for optical interconnects. Sci Rep. 2015;5:11329. 10.1038/srep11329
  • Sun C, Wade MT, Lee Y, et al. Single-chip microprocessor that communicates directly using light. Nature. 2015;528(24):534–538.
  • Luke K, Dutt A, Poitras CB, et al. Overcoming Si3N4 film stress limitations for high quality factor ring resonators. Opt Express. 2013;21(19):22829. 10.1364/OE.21.022829
  • Zan Zhang Z, Beiju Huang X, Xu Zhang ZZ, et al. Monolithic integration of Si3N4 microring filters with bulk CMOS IC through post-backend process. IEEE Photonics Technol Lett. 2015;27(14):1543. 10.1109/LPT.2015.2429677
  • Subramanian AZ, Neutens P, Dhakal A, et al. Low-Loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line. IEEE Photon. J. 2013;5(6):2202809. 10.1109/JPHOT.2013.2292698
  • Lin PT, Singh V, Lin H-Y, et al. Low-Stress silicon nitride platform for Mid-Infrared broadband and monolithically integrated microphotonics, Adv. Opt. Mater. 2013;1(10):732–739. 10.1002/adom.v1.10
  • Singh V, Lin P-T, Patel N, et al. Mid-infrared materials and devices on a Si platform for optical sensing. Sci Technol Adv Mater. 2014;15(1):014603. 10.1088/1468-6996/15/1/014603