3,654
Views
28
CrossRef citations to date
0
Altmetric
Optical, magnetic and electronic device materials

Application of phase-change materials in memory taxonomy

, &
Pages 406-429 | Received 15 Mar 2017, Accepted 16 May 2017, Published online: 13 Jun 2017

References

  • Bhavnagarwala AJ, Tang XH, Meindl JD. The impact of intrinsic device fluctuations on CMOS SRAM cell stability. IEEE J Solid-State Circuits. 2001;36(4):658–665.10.1038/nature16961
  • Waser R, Aono M. Nanoionics-based resistive switching memories. Nat Mater. 2007;6(11):833–840.
  • Wood R. The feasibility of magnetic recording at 1 terabit per square inch. IEEE Trans Magn. 2000;36(1):36–42.
  • Borg HJ, Woudenberg RV. Trends in optical recording. J Magn Magn Mater. 1999;193(1–3):519–525.
  • Lai SK. Flash memories: Successes and challenges. IBM J Res Dev. 2008;52(4.5):529–535.
  • Chen E, Apalkov D, Smith AD, et al. Progress and prospects of spin transfer torque random access memory. IEEE Trans Magn. 2012;48(11):3025–3030.
  • Chun KC, Zhao H, Harms JD, et al. A scaling roadmap and performance evaluation of in-plane and perpendicular MTJ based STT-MRAMs for high-density cache memory. IEEE J Solid-State Circuits. 2013;48(2):598–610.
  • Liu H, Bedau D, Backes D, et al. Ultrafast switching in magnetic tunnel junction based orthogonal spin transfer devices. Appl Phys Lett. 2010;97(24):242510–3.
  • Jeong DS, Thomas R, Katiyar RS, et al. Emerging memories: resistive switching mechanism and current status. Rep Prog Phys. 2012;75(7):076502–31.
  • Kugeler C, Zhang J, Eifert SH, et al. Nanostructured resistive memory cells based on 8nm thin TiO2 films deposited by atomic layer deposition. J Vac Sci Tech. 2011;29(1):01AD01–5.
  • Rios C, Stegmaier M, Hosseini P, et al. Integrated all-photonic non-volatile multi-level memory. Nat Photonics. 2015;9:725–732.
  • Rios C, Stegmaier M, Wright CD, et al. Multi-level storage in non-volatile phase-change nanophotonic memories. Proceedings of the 2016 IEEE Photonics Conference; 2016 Oct 2-6; Waikoloa, HI: IEEE Press; 2016. p. 408–409.
  • Raoux S, Welnic W, Ielmini D. Phase change materials and their application to nonvolatile memories. Chem Rev. 2010;110(1):240–267.
  • Wong HS, Raoux S, Kim S, et al. Phase change memory. Proc IEEE. 2010;98(12):2201–2227.
  • Ahn SJ, Hwang YN, Song YJ, et al. Highly reliable 50nm contact cell technology for 256Mb PRAM. Proceedings of the 2005 Symposium on VLSI Technology; 2005 Jun 14-16; Kyoto, Japan: IEEE Press; 2005. p. 98–99.
  • Wouters DJ, Waser R, Wuttig M. Phase-change and redox-based resistive switching memories. Proc IEEE. 2015;103(8):1274–1288.
  • Wang L, Yang CH, Wen J. Overview of probe-based storage technologies. Nanoscale Res Lett. 2016;11(1):342–355.
  • Gidon S, Lemonnier O, Rolland B, et al. Electrical probe storage using Joule heating in phase change media. Appl Phys Lett. 2004;85(85):6392–6394.
  • Wright CD, Marilyn M, Aziz MM. Terabit-Per-Square-Inch data storage using phase-change media and scanning electrical nanoprobes. IEEE Trans Nanotechnol. 2006;5(85):50–61.
  • Wang L, Gai S. The next generation mass storage devices-Physical principles and current status. Contemp Phys. 2014;55(2):75–93.
  • Chen A. A review of emerging non-volatile memory (NVM) technologies and applications. Solid-State Electron. 2016;125:25–38.
  • Meena JS, Sze SM, Chand U, et al. Overview of emerging nonvolatile memory technologies. Nanoscale Res Lett. 2014;9(1):1–33.
  • Scott JF. Applications of modern ferroelectrics. Science. 2007;315(5814):954–959.
  • Zhou Y, Ramanathan S. Mott memory and neuromorphic devices. Proc IEEE. 2015;103(8):1289–1310.
  • Sebastian A, Pauza A, Rossel C, et al. Resistance switching at the nanometer scale in amorphous carbon. New J Phys. 2011;13(1):013020–12.
  • Lai YC, Wang DY, Huang IS, et al. Low operation voltage macromolecular composite memory assisted by grapheme nanflakes. J Mater Chem C. 2013;1(3):552–559.
  • De Salvo B, Buckley J, Vuillaume D. Recent results on organic-based molecular memories. Curr Appl Phys. 2011;11(2):E49–E57.
  • Prejbeanu IL, Bandiera S, Herault JA, et al. Thermally assisted MRAMs: ultimate scalability and logic functionalities. J Phys D: Appl Phys. 2013;46(7):074002–16.
  • Horiuchi S, Tokura Y. Organic ferroelectrics. Nat Mater. 2008;7(5):357–366.
  • Kim BH, Byun CW, Yoon SM, et al. Oxide-thin-film-transistor-based ferroelectric memory array. IEEE Electron Dev Lett. 2011;32(3):324–326.
  • Pan F, Gao S, Chen C, et al. Recent progress in resistive random access memories: Materials, switching mechanisms, and performance. Mater Sci Eng R. 2014;83:1–59.
  • Linn E, Rosezin R, Kugeler C, et al. Complementary resistive switches for passive nanocrossbar memories. Nat Mater. 2010;9(5):403–406.
  • Wright CD, Liu Y, Kohary KI, et al. Arithmetic and biologically inspired computing using phase-change materials. Adv Mater. 2011;23(30):3408–3413.
  • Wright CD, Hosseini P, Vazquez-Diosdado JA. Beyond von-Neumann computing with nanoscale phase-change memory devices. Adv Funct Mater. 2013;23(8):2248–2254.
  • Loke D, Skelton JM, Wang WJ, et al. Ultrafast phase-change logic device driven by melting processes. PNAS. 2014;111(37):13272–13277.
  • Cassinerio M, Ciocchini N, Ielmini D. Logic computation in phase change materials by threshold and memory switching. Adv Mater. 2013;25(41):5975–5980.
  • Raoux S, Xiong F, Wuttig M, et al. Phase change materials and phase change memory. MRS Bull. 2014;39(8):703–710.
  • Ovshinsky SR. Reversible electrical switching phenomena in disordered structures. Phys Rev Lett. 1968;21(20):1450–1453.
  • Yamada N, Ohno E, Akahira N, et al. High speed overwritable phase change optical disk material. Jpn J Appl Phys. 1987;26(26–4):61–66.
  • Yamada N, Ohno E, Nishiuchi K, et al. Rapid-phase transitions of GeTe-Sb2Te3 pseudobinary amorphous thin films for an optical disk memory. Jpn J Appl Phys. 1991;69(5):2849–2856.
  • Yamada N. Potential of Ge-Sb-Te phase-change optical discs for high data rate recording. Proc SPIE. 1997;3109:28–2837.
  • Ohta T. Phase-change optical memory promotes the DVD optical disk. J Optoelectron Adv Mater. 1997;3109:28–2837.
  • Krebs D, Raoux S, Rettner CT, et al. Threshold field of phase change memory materials measured using phase change bridge devices. Appl Phys Lett. 2009;95(8):082101–3.
  • Chen YC, Rettner CT, Raoux S, et al. Ultra-thin phase-change bridge memory device using GeSb. Proceedings of the 2006 International Electron Devices Meeting; 2016 Dec 11–13; San Francisco, CA: IEEE Press; 2016. p. 531–534. conference book.
  • Matsunaga T, Akola J, Kohara S, et al. From local structure to nanosecond recrystallization dynamics in AgInSbTe phase-change materials. Nat Mater. 2011;10(2):129–134.
  • Tashiro H, Harigaya M, Kageyama Y, et al. Structural analysis of Ag-In-Sb-Te phase-change material. Jpn J Appl Phys. 2002;41(41):3758–3759.
  • Cheng HY, Raoux S, Jordan-Sweet JL, et al. Crystallization properties of materials along the pseudo-binary line between GeTe and Sb. J Appl Phys. 2014;115(115):093101–5.
  • Chen YC, Hsu TH, Raoux S, et al. A high performance phase change memory with fast switching speed and high temperature retention by engineering the GexSbyTez phase change material. Proceedings of the 2011 International Electron Devices Meeting; 2011 Dec 5-7; Washington, DC: IEEE Press; 2011. p. 3.4–4.
  • Wuttig M, Yamada N. Phase-change materials for rewriteable data storage. Nat Mater. 2007;6(11):824–832.
  • Kalb J, Spaepen F, Wuttig M. Kinetics of crystal nucleation in undercooled droplets of Sb- and Te-based alloys used for phase change recording. J Appl Phys. 2005;98(5):054910–7.
  • Pieterson LV, Lankhorst MHR, Schijndel MV, et al. Phase-change recording materials with a growth-dominated crystallization mechanism: A material overview. J Appl Phys. 2005;97(8):083520–7.
  • Fons P, Osawa H, Kolobov AV, et al. Photoassisted amorphization of the phase-change memory alloy Ge2Sb2Te5. Phys Rev B: Condens Matter. 2010;82(4):041203–041206.
  • Nam SW, Chung HS, Lo YC, et al. Electrical wind force-driven and dislocation-templated amorphization in phase-change nanowires. Science. 2012;336(6088):1561–1566.
  • Nukala P, Lin CC, Composto R, et al. Ultralow-power switching via defect engineering in germanium telluride phase-change memory devices. Nat Commun. 2016;7:10482–8.
  • Adler D, Henisch HK, Mott N. The mechanism of threshold switching in amorphous alloys. Rev Mod Phys. 1978;50(2):209–220.
  • Adler D, Shur MS, Silver M, et al. Threshold switching in chalcogenide-glass thin films. J Appl Phys. 1980;51(6):3289–3310.
  • Adler D, Shur MS, Silver M, et al. Reply to “Comment on ‘Threshold switching in chalcogenide-glass thin films’”. J Appl Phys. 1984;56(2):579–580.
  • Pirovano A, Lacaita AL, Benvenuti A, et al. Electronic switching in phase-change memories. IEEE Trans Electron Devices. 2004;51(3):452–459.10.1109/TED.2003.823243
  • Redaelli A, Pirovano A, Benvenuti A, et al. Threshold switching and phase transition numerical models for phase change memory simulations. J Appl Phys. 2008;103(11):111101–111119.10.1063/1.2931951
  • Ielmini D, Zhang YG. Analytical model for sub-threshold conduction and threshold switching in chalcogenide-based memory devices. J Appl Phys. 2007;102(5):054517–54517.10.1063/1.2773688
  • Ielmini D. Threshold switching mechanism by high-field energy gain in the hopping transport of chalcogenide glasses. Phys Rev B. 2008;78(3):035308–35308.10.1103/PhysRevB.78.035308
  • Karpov VG, Kryukov YA, Savransky SD, et al. Nucleation switching in phase change memory. Appl Phys Lett. 2007;90(12):123504–123504.10.1063/1.2715024
  • Pirovano A, Lacaita AL, Pellizzer F, et al. Low-field amorphous state resistance and threshold voltage drift in chalcogenide materials. IEEE Trans Electron Devices. 2004;51(5):714–719.10.1109/TED.2004.825805
  • Boniardi M, Ielmini D. Physical origin of the resistance drift exponent in amorphous phase change materials. Appl Phys Lett. 2011;98(24):243506–243506.10.1063/1.3599559
  • Ielmini D, Lavizzari S, Sharma D, et al. Temperature acceleration of structural relaxation in amorphous Ge2Sb2Te5. Appl Phys Lett. 2008;92:193511–193514.10.1063/1.2930680
  • Karpov IV, Mitra M, Kau D, et al. Fundamental drift of parameters in chalcogenide phase change memory. J Appl Physiol. 2007;102(12):124503–124509.10.1063/1.2825650
  • Ielmini D, Lavizzari S, Sharma D, et al. Physical interpretation, modeling and impact on phase change memory (PCM) reliability of resistance drift due to chalcogenide structural relaxation. Proceedings of the 2007 International Electron Devices Meeting; 2007 Dec 10-12; Washington (DC): IEEE Press; 2007. p. 939–942.
  • Boniardi M, Redaelli A, Pirovano A, et al. A physics-based model of electrical conduction decrease with time in amorphous Ge2Sb2Te5. J Appl Phys. 2009;105(8):084506–84506.10.1063/1.3109063
  • Mitra M, Jung Y, Gianola DS, et al. Extremely low drift of resistance and threshold voltage in amorphous phase change nanowire devices. Appl Phys Lett. 2010;96:222111–222113.10.1063/1.3447941
  • Yin Y, Zhang H, Hosaka S, et al. Volume-change-free GeTeN films for high-performance phase-change memory. J Phys D: Appl Phys. 2013;46:505311–505315.10.1088/0022-3727/46/50/505311
  • Zhou X, Dong W, Zhang H, et al. A zero density change phase change memory material: GeTe-O structural characteristics upon crystallisation. Sci Rep. 2015;5:824–11158.10.1038/srep11150
  • Reifenberg J, Pop E, Gibby A, et al. Multiphysics modeling and impact of thermal boundary resistance in phase change memory devices. Proceedings of the 2006 Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronics Systems; 2006 May 10- June 2; San Diego, CA: IEEE Press; 2006. p. 106–113.
  • Risk WP, Rettner CT, Raoux S, et al. In situ 3 omega techniques for measuring thermal conductivity of phase-change materials. Rev Sci Instrum. 2008;79(2):14–19.
  • Reifenberg JP, Chang KW, Panzer MA, et al. Thermal boundary resistance measurements for phase change memory devices. IEEE Electron Device Lett. 2010;31(1):56–58.10.1109/LED.2009.2035139
  • Lyeo HK, Cahill DG, Lee BS, et al. Thermal conductivity of phase-change material Ge2Sb2Te5. Appl Phys Lett. 2006;89:151904–151904.10.1063/1.2359354
  • Reifenberg JP, Panzer MA, Kim S, et al. Thickness and stoichiometry dependence of the thermal conductivity of GeSbTe films. Appl Phys Lett. 2007;91:111904–111904.10.1063/1.2784169
  • Goodson KE. Ordering up the minimum thermal conductivity of solids. Science. 2007;315(5810):342–343.10.1126/science.1138067
  • Bozorg-Grayell E, Reifenberg JP, Panzer MA, et al. Temperature-dependent thermal properties of phase-change memory electrode materials. IEEE Electron Device Lett. 2011;32(9):1281–1283.10.1109/LED.2011.2158796
  • Wu JY, Breitwisch M, Kim S, et al. A low power phase change memory using thermally confined TaN/TiN bottom electrode. Proceedings of the 2011 International Electron Devices Meeting; 2011 Dec 5-7; Washington (DC): IEEE Press; 2011. p. 3.2.1–4.
  • Hamada E, Fujii T, Tomizawa Y, et al. High density optical recording on dye material discs: an approach for achieving 4.7 GB density. Jpn J Appl Phys. 1997;36(1):593–594.10.1143/JJAP.36.593
  • Ichimura I, Maeda F, Osato K, et al. Optical disk recording using a GaN blue-violet laser diode. Jpn J Appl Phys. 2000;39(2B):937–942.10.1143/JJAP.39.937
  • Ichimura I, Hayashi S, Kino GS. High-density optical recording using a solid immersion lens. Appl Opt. 1997;36(19):4339–4348.10.1364/AO.36.004339
  • Yamamoto K, Osato K, Ichimura I, et al. 0.8-numerical-aperature two-element objective lens for the optical disk. Jpn J Appl Phys. 2006;36:456–459.
  • Wang L, Yang CH, Gai S, et al. Current status and future prospects of conventional recording technologies for mass storage applications. Curr Nanosci. 2014;10(5):638–659.10.2174/1573413710666140401181201
  • Borg HJ, Woudenberg RV. Trends in optical recording. J Magn Magn Mater. 1999;193(1-3):519–525.10.1016/S0304-8853(98)00485-5
  • Ishimoto T, Saito K, Shinoda M, et al. Gap servo system for a biaxial device using an optical gap signal in a near field readout system. Jpn J Appl Phys. 2003;42(5A):2719–2724.10.1143/JJAP.42.2719
  • Kim JH, Lee JS. Cover-layer with high refractive index for near-field recording media. Jpn J Appl Phys. 2007;46(6B):3993–3996.10.1143/JJAP.46.3993
  • Yasuda K, Ono M, Aratani K, et al. Premastered optical disk by superresolution. Jpn J Appl Phys. 1993;32(1):65–66.
  • Cumpson BH, Ananthavel SO, Barlow S, et al. Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication. Nature. 1999;398(6722):51–54.
  • Jiang B, Shen ZL, Cai JW, et al. New method of two-photon multi-layer optical disc storage. Proc SPIE. 2006;6150:61503Q–5.10.1117/12.676491
  • Pu SZ, Tang HH, Chen B, et al. Photochromic diarylethene for two-photon 3D optical storage. Mater Lett. 2006;60(29-30):3553–3557.10.1016/j.matlet.2006.03.050
  • Ting LH, Miao XS, Lee ML, et al. Optical and magneto-optical characterization for multi-dimensional multi-level optical recording materials. Synth React Inorg M. 2008;38(3):284–287.
  • Shi LP, Chong TC, Tan PK, et al. Study of the multi-level reflection modulation recording for phase change optical disks. Jpn J Appl Phys. 2000;39(2B):733–736.10.1143/JJAP.39.733
  • Chen YL, Shieh HP. Multi-level recording in erasable phase-change media by light intensity modulation. Proc SPIE. 2000;4081:60–68.10.1117/12.390522
  • Park KS, Park YP, Park NC. Prospect of recording technology for higher storage performance. IEEE Trans Magn. 2011;47(3):539–545.10.1109/TMAG.2010.2102343
  • Kim JG, Kim WC, Hwang HW, et al. Anti-shock air gap control for SIL-based near-field recording system. IEEE Trans Magn. 2009;45(5):2244–2247.
  • Kim JG, Kim WC, Hwang HW, et al. Improved anti-shock air gap control algorithm with acceleration feedforward control for high-numerical aperture near-field storage system using solid immersion lens. Jpn J Appl Phys. 2010;49(8):08KC06–09.
  • Koide D, Takano Y, Tokumaru H, et al. High-speed recording up to 15000 rpm using thin optical disks. Jpn J Appl Phys. 2008;47(7):5822–5827.10.1143/JJAP.47.5822
  • Bruls DM, Lee JI, Verschuren CA, et al. High data transfer rate near-field recording system with a solid immersion lens for polymer cover-layer discs. Proc SPIE. 2006;6282:62820F–8.
  • Koide D, Takeshi K, Haruki T, et al. High-speed and precise servo system for near-field optical recording. Jpn J Appl Phys. 2012;51(8S2):08JA04–4.10.7567/JJAP.51.08JA04
  • Kim JH, Lee SH, Seo JJ. Near-field optical recording with nanocomposite cover-layer for numerical aperture of 1.85. J Mod Optic. 2012;59(11):943–946.10.1080/09500340.2012.683824
  • Friedrich B, Thomas F. Materials in optical data storage. Int J Mater Res. 2010;101(2):199–215.
  • Walker E, Dvornikov A, Coblentz K, et al. Progress in two-photon 3D optical data storage. Proc SPIE. 2008;7053:705308–705316.10.1117/12.798814
  • Binnig G, Quate CF, Gerber Ch. Atomic force microscope. Phys Rev Lett. 1986;56(9):930–933.10.1103/PhysRevLett.56.930
  • Butt HJ, Cappella B, Kappl M. Force measurements with the atomic force microscope: technique, interpretation and applications. Surf Sci Rep. 2005;59(1-6):1–152.10.1016/j.surfrep.2005.08.003
  • Vettiger P, Cross G, Despont M, et al. The millipede-nanotechnology entering data storage. IEEE Trans Nanotechnol. 2002;1(1):39–55.10.1109/TNANO.2002.1005425
  • Pozidis H, Haberle W, Wiesmann D, et al. Demonstration of thermomechanical recording at 641 Gbit/in2. IEEE Trans Magn. 2004;40(4):2531–2536.10.1109/TMAG.2004.830470
  • Vettiger P, Despont M, Drechsler U, et al. The “Millipede”-more than thousand tips for future AFM storage. IBM J Res Dev. 2000;44(3):323–340.10.1147/rd.443.0323
  • Wright CD, Aziz MM, Shah P, et al. Scanning probe memories-technologies and applications. Curr Appl Phys. 2011;11(2):e104–e109.10.1016/j.cap.2010.11.130
  • Wright CD, Wang L, Shah P, et al. The design of rewritable ultrahigh density scanning-probe phase-change memories. IEEE Trans Nanotechnol. 2011;10(4):900–912.10.1109/TNANO.2010.2089638
  • Wang L, Wright CD, Shah P, et al. Ultra high density scanning electrical probe phase-change memory for archival storage. Jpn J Appl Phys. 2011;50(9S1):09MD04–2.10.7567/JJAP.50.09MD04
  • Aziz MM, Wright CD. An analytical model for nanoscale electrothermal probe recording on phase-change media. J Appl Phys. 2006;90(3):034101–34112.
  • Aziz MM, Wright CD. A slope-theory approach to electrical probe recording on phase-change media. J Appl Phys. 2005;97(10):103537–103539.10.1063/1.1904156
  • Satoh H, Sugawara K, Tanaka K. Nanoscale phase changes in crystalline Ge2Sb2Te5 films using scanning probe microscopes. J Appl Phys. 2006;99(2):024306–24307.10.1063/1.2163010
  • Tanaka K. Smallest (~10 nm) phase-change marks in amorphous and crystalline Ge2Sb2Te5 films. J Non-Crystals Solids. 2007;353(18-21):1899–1903.10.1016/j.jnoncrysol.2007.02.020
  • Kim HJ, Choi SK, Kang SH, et al. Structural phase transitions of Ge2Sb2Te5 cells with TiN electrodes using a homemade W heater tip. Appl Phys Lett. 2007;90(8):083103–83103.10.1063/1.2709617
  • Bhaskaran H, Sebastian A, Pauza A, et al. Nanoscale phase transformation in Ge2Sb2Te5 using encapsulated scanning probes and retraction force microscopy. Rev Sci Instrum. 2009;80(8):083701–83706.10.1063/1.3204449
  • Yang F, Xu L, Chen J, et al. Nanoscale multilevel switching in Ge2Sb2Te5 thin film with conductive atomic force microscopy. Nanotechnology. 2016;27(3):035706–35707.10.1088/0957-4484/27/3/035706
  • Wang L, Wen J, Yang CH, et al. Optimisation of write performance of phase-change probe memory for future storage applications. Nanosci Nanotechnol Lett. 2015;7(11):870–878.10.1166/nnl.2015.2048
  • Wang L, Wright CD, Aziz Mustafa, et al. A physics-based three dimensional readout model for phase-change probe memory. Curr Appl Phys. 2014;14(9):1296–1300.10.1016/j.cap.2014.06.020
  • Robertson J. Diamond-like amorphous carbon. Mater Sci Eng R. 2002;37(4-6):129–281.10.1016/S0927-796X(02)00005-0
  • Wang L, Wright CD, Aziz MM, et al. Optimisation of scanning probe phase-change memory in terms of the thermal conductivities of capping and under layer. EPL. 2013;104:56007–56007.10.1209/0295-5075/104/56007
  • Wang L, Gong SD, Yang CH, et al. Towards low energy consumption data storage era using phase-change probe memory with TiN bottom electrode. Nanotechnol Rev. 2016;5(5):455–460.
  • Bhaskaran H, Sebastian A, Drechsler U, et al. Encapsulated tips for reliable nanoscale conduction in scanning probe technologies. Nanotechnology. 2009;20:105701–105708.10.1088/0957-4484/20/10/105701
  • Akiyama T, Gullo MR, De Rooij NF, et al. Development of insulated conductive probe with platinum silicide tips for atomic force microscopy in cell biology. Jpn J Appl Phys. 2004;43(6B):3865–3867.10.1143/JJAP.43.3865
  • Haskaran H, Sebastian A, Despont M, et al. Nanoscale PtSi tips for conducting probe technologies. IEEE Trans Nanotechnol. 2009;8(1):128–131.10.1109/TNANO.2008.2005199
  • Wang L, Wright CD, Aziz MM, et al. Terabit-per-square-inch scanning probe phase-change memory model based on nucleation-growth theory. Mater Lett. 2013;112:51–53.10.1016/j.matlet.2013.08.121
  • Wang L, Wright CD, Aziz MM, et al. A contact resistance model for scanning probe phase-change memory. J Micromech Microeng. 2014;24(3):037001–37006.10.1088/0960-1317/24/3/037001
  • Wang L, Yang CH, Wen J, et al. The oxidation behaviour of diamond like carbon for phase-change probe memory application. J Nanosci Nanotechnol. 2015;15(6):4457–4461.10.1166/jnn.2015.9798
  • Wang L, Wen J, Yang CH, et al. The route for ultra-high recording density using probe-based data storage device. Nano. 2015;10(8):1550118–1550118.10.1142/S1793292015501180
  • Wright CD, Shah P, Wang L, et al. Write strategies for multiterabit per square inch scanned-probe phase-change memories. Appl Phys Lett. 2010;97(17):173104–173104.10.1063/1.3506584
  • Hayat H, Kohary K, Wright CD. Simulation of ultrahigh storage densities in nanoscale patterned probe phase change memories. Proceedings of the 2016 Nanotechnology Materials and Device Conference; 2016 Oct 9-12; Toulouse, France: IEEE Press; 2016. p. 1–2.
  • Burr GW, Breitwisch MJ, Franceschini M, et al. Phase change memory technology. J Vac Sci Technol B. 2010;28:223–262.10.1116/1.3301579
  • Lai S, Lawrey T. OUM-A 180 nm nonvolatile memory cell element technology for stand alone and embedded applications. Proceedings of the 2001 International Electron Devices Meeting; 2001 Dec 2-5; Washington (DC): IEEE Press; 2001. p. 36.5.1–4.
  • Lacaita AL, Wouters DJ. Phase-change memories. Phys Stat Sol A. 2008;205(10):2281–2297.10.1002/pssa.v205:10
  • Chen YC, Rettner CT, Raoux S, et al. Ultra-thin phase-change bridge memory device using GeSb. Proceedings of the 2006 International Electron Devices Meeting; 2006 Dec 11-13; San Francisco, CA: IEEE Press; 2006. p. 777–780.
  • Lankhorst M, Ketelaars B, Wolter R. Low-cost and nanoscale non-volatile memory concept for future silicon chips. Nat Mater. 2005;4(4):347–352.10.1038/nmat1350
  • Cheng HY, BrightSky M, Raoux S, et al. Atomic-level engineering of phase change materials for novel fast-switching and high-endurance PCM for storage class memory application. Proceedings of the 2013 International Electron Devices Meeting; 2013 Dec 9-11; Washington (DC): IEEE Press; 2013. p. 30.6.1–4.
  • Lee J, Cho SL, Ahn DH, et al. Scalable high-performance phase-change memory employing CVD gebite. IEEE Electron Device Lett. 2011;32(8):1113–1115.10.1109/LED.2011.2157075
  • Morales-Sanchez E, Prokhorov EF, Gonzalez-Hernandez J, et al. Structural, electric and kinetic parameters of ternary alloys of GeSbTe. Thin Solid Films. 2005;471(1-2):243–247.10.1016/j.tsf.2004.06.141
  • Redaelli A, Ielmini D, Lacaita AL, et al. Impact of crystallization statistics on data retention for phase change memories. Proceedings of the 2005 International Electron Devices Meeting; 2005 Dec 4-7; Washington (DC): IEEE Press; 2005. p. 742–745.
  • Lung HL, Breitwisch M, Wu JY, et al. A method to maintain phase-change memory pre-coding data retention after high temperature solder bonding process in embedded systems. Proceedings of the 2011 Symposium on VLSI Technology; 2011 Jun 13-16; Kyoto, Japan: IEEE Press; 2011. p. 98–99.
  • Hwang YN, Lee SH, Ahn SJ, et al. Writing current reduction for high-density phase-change RAM. Proceedings of the 2003 International Electron Devices Meeting; 2003 Dec 8-10; Washington, DC: IEEE Press; 2003. p. 37.1.1–4.
  • Matsuzaki N, Kurotsuchi K, Matsui Y, et al. Oxygen-doped GeSbTe phase-change memory cells featuring 1.5-V/100-μA standard 0.13-μm CMOS operations. Proceedings of the 2005 International Electron Devices Meeting; 2005 Dec 4-7; Washington, DC: IEEE Press; 2005. p. 738–741.
  • Van Peiterson L, Lankhorst M, Van Schijndel M, et al. Phase-change recording materials with a growth-dominated crystallization mechanism: a material overview. J Appl Phys. 2005;97(8):083520–83528.10.1063/1.1868860
  • Cheng HY, Hsu TH, Raoux S, et al. A high performance phase change memory with fast switching speed and high temperature retention by engineering the GexSbyTez phase change material. Proceedings of the 2011 International Electron Devices Meeting; 2011 Dec 5-7; Washington (DC): IEEE Press; 2011. p. 3.4.1–4.
  • Burr GW, Brightsky MJ, Sebastian A, et al. Recent progress in phase-change memory technology. IEEE J Emerg Sel Topics Circuits Syst. 2016;6(2):146–162.10.1109/JETCAS.2016.2547718
  • Navarro G, Coue M, Kiouseloglou A, et al. Trade-off between set and data retention performance thanks to innovative materials for phase-change memory. Proceedings of the 2013 International Electron Devices Meeting; 2013 Dec 9-11; Washington, DC: IEEE Press; 2013. p. 21.5.1–4.
  • Morikawa T, Akita K, Ohyanagi T, et al. A low power phase change memory using low thermal conductive doped-Ge2Sb2Te5 with nano-crystalline structure. Proceedings of the 2012 International Electron Devices Meeting; 2012 Dec 10-12; San Francisco, CA: IEEE Press; 2012. p. 21.5.1–4.
  • Zuliani P, Varesi E, Palumbo E, et al. Overcoming temperature limitations n phase change memories with optimized GexSbyTez. IEEE Trans Electron Dev. 2013;60(12):4020–4026.10.1109/TED.2013.2285403
  • Raoux S, Jordan-Sweet JL, Kellock AJ. Crystallization properties of ultrathin phase change films. J Appl Phys. 2008;103(11):114310–114317.10.1063/1.2938076
  • Caldwell MA, Raoux S, Wang RY, et al. Synthesis and size-dependent crystallization of colloidal germanium telluride nanoparticles. J Mater Chem. 2010;20(7):1285–1291.10.1039/B917024C
  • Yu D, Brittman S, Lee JS, et al. Minimum voltage for threshold switching in nanoscale phase-change memory. Nano Lett. 2008;8(10):3429–3433.10.1021/nl802261s
  • Kim S, Bae BJ, Zhang Y, et al. One-dimensional thickness scaling study of phase change material (Ge2Sb2Te5) using a Pseudo 3-terminal device. IEEE Trans Electron Dev. 2011;58(5):1483–1489.
  • Lee SH, Jung Y, Agarwal R, et al. Highly scalable non-volatile and ultra-low-power phase-change nanowire memory. Nat Nanotechnol. 2007;2:626–630.10.1038/nnano.2007.291
  • Baek C-K, Kang D, Kim J, et al. Improved performance of In2Se3 nanowire phase-change memory with SiO2 passivation. Solid-State Electron. 2013;80:10–13.10.1016/j.sse.2012.10.007
  • Krebs D, Raoux S, Rettner CT, et al. Threshold field of phase change memory materials measured using phase change bridge devices. Appl Phys Lett. 2009;95(8):082101–82103.10.1063/1.3210792
  • Krebs D, Raoux S, Rettner CT, et al. Characterization of phase change memory materials using phase change bridge devices. J Appl Phys. 2009;106:90–92.
  • Kaes M, Le Gallo M, Sebastian A, et al. High-field electrical transport in amorphous phase-change materials. J Appl Phys. 2015;118(13):135707–135712.10.1063/1.4932204
  • Xiong F, Liao AD, Estrada D, et al. Low-power switching of phase-change materials with carbon nanotube electrodes. Science. 2011;332(6029):568–570.10.1126/science.1201938
  • Xiong F, Bae MH, Dai Y, et al. Nanowire phase change memory with carbon nanotube electrodes. Proceedings of the 2012 Device Research Conference; 2012 Jun18-20; University Park, PA: IEEE Press; 2012. p. 215–216.
  • Wang L, Yang CH, Wen J. Physical principles and current status of emerging non-volatile solid state memories. Electron Mater Lett. 2015;11(4):505–543.10.1007/s13391-015-4431-4
  • Ha YH, Yi JH, Horii H, et al. An edge contact type cell for phase change RAM featuring very low power consumption. Proceedings of the 2003 Symposium on VLSI Technology; 2003 Jun 10-12; Kyoto, Japan: IEEE Press; 2003. p. 175–176.
  • Pellizzer F, Pirovano A, Ottogalli F, et al. Novel μtrench phase-change memory cell for embedded and stand-alone non-volatile memory applications. Proceedings of the 2004 Symposium on VLSI Technology; 2004 Jun 15-17; Honolulu, HI: IEEE Press; 2004. p. 18–19.
  • Song YJ, Ryoo KC, Hwang YN, et al. Highly reliable 256 Mb PRAM with advanced ring contact technology and novel encapsulating technology. Proceedings of the 2006 Symposium on VLSI Technology; 2006 Jul 13-15; Honolulu, HI: IEEE Press; 2006. p. 118–119.
  • Happ TD, Breitwisch M, Schrott A, et al. Novel one-mask self-heating pillar phase change memory. Proceedings of the 2006 Symposium on VLSI Technology; 2006 Jul 13-15; Honolulu, HI: IEEE Press; 2006. p. 120–121.
  • Breitwisch M, Nirschi T, Chen CF, et al. Novel lithography-independent pore phase change memory. Proceedings of the 2007 Symposium on VLSI Technology; 2007 Jun 12-14; Kyoto, Japan: IEEE Press; 2007. p. 100–101.
  • Chen WS, Lee C, Chao DS, et al. A novel cross-spacer phase change memory with ultra-small lithography independent contact area. Proceedings of the 2007 International Electron Devices Meeting; 2007 Dec 10-12; Washington, DC: IEEE Press; 2007. p. 319–322.
  • Im DH, Lee JI, Cho SL, et al. A unified 7.5 nm dash-type confined cell for high performance PRAM device. Proceedings of the 2008 International Electron Devices Meeting; 2008 Dec 15-17; San Francisco, CA: IEEE Press; 2008. p. 1–4.
  • Simpson RE, Fons P, Kolobov AV, et al. Interfacial phase-change memory. Nat Nanotechnol. 2011;6(8):501–505.10.1038/nnano.2011.96
  • Tominaga J, Simpson R, Fons P, et al. The first principle computer simulation and real device characteristics of superlattice phase-change memory. Proceedings of the 2010 International Electron Devices Meeting; 2010 Dec 6-8; San Francisco, CA: IEEE Press; 2010. p. 22.3.1–4.
  • Ohyanagi T, Takaura N, Tai M, et al. Charge-injection phase change memory with high-quality GeTe/Sb2Te3 superlatice featuring 70 μA RESET, 10-ns SET and 100 M endurance cycles operations. Proceedings of the 2013 International Electron Devices Meeting; 2013 Dec 9-11; Washington (DC): IEEE Press; 2013. p. 30.5.1–4.
  • Takaura N, Ohyanagi T, Tai M, et al. 55-μA GexTe1-x/Sb2Te3 superlattice topological switching random-access memory (TRAM) and study of atomic arrangement in Ge-Te and Sb-Te structures. Proceedings of the 2014 International Electron Devices Meeting; 2014 Dec 15-17; San Francisco, CA: IEEE Press; 2014. p. 29.2.1–4.
  • Nirschl T, Phipp JB, Happ TD, et al. Write strategies for 2 and 4-bit multi-level phase-change memory. Proceedings of the 2007 International Electron Devices Meeting; 2007 Dec 10-12; Washington (DC): IEEE Press; 2007. p. 461–464.
  • Rao F, Song Z, Wu Z, et al. Multilevel data storage characteristics of phase change memory cell with double layer chalcogenide films (Ge2Sb2Te5 and Sb2Te3). Jpn J Appl Phys. 2007;46:80–82.
  • Yin Y, Ota K, Higano N, et al. Multilevel storage in lateral top-heater phase-change memory. IEEE Electron Dev Lett. 2008;29(8):867–878.
  • Burr GW, Tchoulfian P, Topuria T, et al. Observation and modeling of polycrystalline grain formation in Ge2Sb2Te5. J Appl Phys. 2012;111(10):104308–104312.10.1063/1.4718574
  • Lee BS, Darmawikarta K, Raoux S, et al. Distribution of nanoscale nuclei in the amorphous dome of a phase change random access memory. Appl Phys Lett. 2014;104(7):071907–71907.10.1063/1.4865586
  • Papandreou N, Pozidis H, Mittelholzer T, et al. Drift-tolerant multilevel phase-change memory. Proceedings of the 2011 IEEE International Memory Workshop; 2011 May 22-25; Monterey, CA: IEEE Press; 2011. p. 147–150.
  • Bedeschi F, Fackenthal R, Resta C, et al. A bipolar-selected phase change memory featuring multilevel cell storage. IEEE J Solid-State Circuits. 2009;44(1):217–227.10.1109/JSSC.2008.2006439
  • Sasago Y, Kinoshita M, Morikawa T, et al. Cross-point phase change memory with 4F2 cell size driven by low-contact-resistivity poly-Si diode. Proceedings of the 2009 Symposium on VLSI Technology; 2009 Jun 16-18; Kyoto, Japan: IEEE Press; 2009. p. 24–25.
  • DerChang K, Tang S, Karpov IV, et al. A stackable cross point phase change memory. Proceedings of the 2009 International Electron Devices Meeting; 2009 Dec 7-9; Baltimore, Maryland: IEEE Press; 2009. p. 1–4.
  • Tallarida G, Huby N, Kotowska BK, et al. Low temperature rectifying junctions for crossbar non-volatile memory devices. Proceedings of the 2009 IEEE International Memory Workshop; 2009 May 10-14; Monterey, CA: IEEE Press; 2009. p. 1–3.
  • Lin KL, Hou TH, Lee YJ, et al. Low-reset unipolar HfO2 RRAM and tunable resistive-switching mode via interface engineering. Proceedings of the 2011 IEEE International Semiconductor Device Research Symposium; 2011 Dec 7-9; College Park, MD: IEEE Press; 2009. p. 1–2.
  • Yang HX, Li MH, He W, et al. Novel selector for high density non-volatile memory with ultra-low holding voltage and 1e7 on/off ratio. Proceedings of the 2015 Symposium on VLSI Technology; 2015 Jun 16-18; Kyoto, Japan: IEEE Press; 2015. p. T9.2–2.
  • Shenoy RS, Gopalakrishnan K, Jackson B, et al. Endurance and scaling trends of novel access-devices for multi-layer crosspoint-memory based on Mixed Ionic Electronic Conduction (MIEC) materials. Proceedings of the 2011 Symposium on VLSI Technology; 2011 Jun 13-16; Kyoto, Japan: IEEE Press; 2011. p. 94–95.
  • Burr GW, Virwani K, Shenoy RS, et al. Recovery dynamics and fast (sub-50 ns) read operation with access devices for 3D crosspoint memory based on mixed-ionic-electronic-conduction (MIEC). Proceedings of the 2013 Symposium on VLSI Technology; 2013 Jun 10-13; Kyoto, Japan: IEEE Press; 2013. p. T66–T67.
  • Burr GW, Virwani K, Shenoy RS, et al. Large-scale (512kbit) integration of multi-layer-ready access-devices based on Mixed-Ionic-Electronic-Conduction (MIEC) at 100% field. Proceedings of the 2013 Symposium on VLSI Technology; 2013 Jun 10-13; Kyoto, Japan: IEEE Press; 2013. p. 41–42.
  • Gopalakrishnan K, Shenoy RS, Rettner CT, et al. Highly-scalable novel access device based on Mixed Ionic Electronic Conduction (MIEC) materials for high density phase change memory (PCM) arrays. Proceedings of the 2010 Symposium on VLSI Technology; 2010 Jun 14-17; Honolulu, HI: IEEE Press; 2010. p. 205–206.
  • Kinoshita M, Sasago Y, Minemura H, et al. Scalable 3-D vertical chian-cell-type phase-change memory with 4F2 poly-Si diodes. Proceedings of the 2012 Symposium on VLSI Technology; 2012 Jun 12-14; Honolulu, HI: IEEE Press; 2012. p. 35–36.
  • Stegmaier M, Rios C, Bhaskaran H, et al. Nonvolatile all-optical 1×2 switch for chipscale photonic networks. Adv Opt Mater. 2016;5(1):00346–346.
  • Caulfield HJ, Dolev S. Why future supercomputing requires optics. Nat Photonics. 2010;4(5):261–263.10.1038/nphoton.2010.94
  • Stegmaier M, Rios C, Bhaskaran H, et al. Thermo-optical effect in phase-change nanophotonics. ACS Photonics. 2016;3(5):828–835.10.1021/acsphotonics.6b00032
  • Hosseini P, Wright CD, Bhaskaran H. An optoelectronic framework enabled by low-dimensional phase-change films. Nature. 2014;511(7508):206–211.10.1038/nature13487
  • Bhaskaran H, Pernice WHP, et al. Photonic non-volatile memories using phase-change materials. Appl Phys Lett. 2012;101:171101–171104.
  • Rios C, Hosseini P, Wright CD, et al. On-chip photonic memory elements employing phase-change materials. Adv Mater. 2014;26(9):1372–1377.10.1002/adma.201304476
  • Yang Z, Ramanathan S. Breakthroughs in photonics 2014: phase change materials for photonics. IEEE Photonics J. 2015;7(3):0700305–700305.
  • Inoue M, Kosuda A, Mishima K, et al. 512 GB recording on 16-layer optical disc with Blu-ray disc based optics. Proc SPIE. 2010;7730:77300D–6.10.1117/12.858861
  • Inoue M, Kosuda A, Mishima K, et al. Ultra-high-density phase-change storage and memory. Nat Mater. 2006;5(5):383–387.
  • Liang J, Jeyasingh RGD, Chen HY, et al. A 1.4 μA reset current phase change memory cell with integrated carbon nanotube electrodes for cross-point memory application. Proceedings of the 2011 Symposium on VLSI Technology; 2011 Jun 13-16; Kyoto, Japan: IEEE Press; 2011. p. 100–101.
  • Kim IS, Cho SL, Im DH, et al. High performance PRAM cell scalable to sub-20 nm technology with below 4F2 cell size, extendable to DRAM applications. Proceedings of the 2010 Symposium on VLSI Technology; 2010 Jun 14-17; Honolulu, HI: IEEE Press; 2010. p. 203–204.
  • Iwasaki S. Perpendicular magnetic recording-Its development and realization. J Magn Magn Mater. 2012;324:244–247.10.1016/j.jmmm.2010.11.092
  • Hsieh ER, Chuang CH, Chung SS, et al. An innovative 1T1R dipole dynamic random access memory (DiRAM) featuring high speed, ultra-low power, and low voltage operation. Proceedings of the 2016 Symposium on VLSI Technology; 2016 Jun 13-17; Honolulu, HI: IEEE Press; 2016. p. 1–2.