4,868
Views
35
CrossRef citations to date
0
Altmetric
Focus on Endeavor for Creation of Materials-Tissues Intelligent Interface

Understanding biomaterial-tissue interface quality: combined in vitro evaluation

ORCID Icon
Pages 550-562 | Received 22 Mar 2017, Accepted 27 Jun 2017, Published online: 31 Jul 2017

References

  • von Recum AF, editor. Handbook of biomaterials evaluation: scientific, technical, and clinical testing of implant materials. USA: Taylor & Francis; 1998.
  • Black J. Biological performance of biomaterials: fundamentals of biocompatibility. NY: Marcel Dekker; 1999.
  • Bailey J, Thew M, Balls M. An analysis of the use of animal models in predicting human toxicology and drug safety. ATLA. 2014;42:181–189.
  • Patronek GJ, Rauch A. Systematic review of comparative studies examining alternatives to the harmful use of animals in biomedical education. J Am Vet Med Assoc. 2007;230:37–43.10.2460/javma.230.1.37
  • Reifenrath J, Angrisani N, Lalk M, et al. Replacement, refinement and reduction: necessaity of standardization and computational models for long bone fracture repair in animals. J Biomed Mater Res. 2014;102A:2884–2900.10.1002/jbm.a.v102.8
  • van Mow C, Huiskes R. Basic orthopedic biomechanics and mechanobiology. USA: Lippincott, Williams & Wilkins; 2005.
  • Katsikogianni M, Missirlis YF. Concise review of mechanisms of bacterial adhesion to biomaterials and of techniques used in estimating bacteria-material interactions. Europ Cells Materials. 2004;8:37–57.10.22203/eCM
  • Lo CM, Wang HB, Dembo M, et al. Cell movement is guided by the rigidity of the substrate. Biophys J. 2000;79:144–152.10.1016/S0006-3495(00)76279-5
  • Bilotsky Y, Gasik M. Modelling of poro-visco-elastic biological systems. J Phys Conf Series. 2015;633:021234.
  • Discher DE, Janmey P, Wang Y-L. Tissue cells feel and respond to the stiffness of their substrate. Science. 2005;310:1139–1143.10.1126/science.1116995
  • Saha K, Keung AJ, Irwin EF, et al. Substrate modulus directs neural stem cell behavior. Biophys J. 2008;95:4426–4438.10.1529/biophysj.108.132217
  • Gbejuade HO, Lovering AM, Webb JC. The role of microbial biofilms in prosthetic joint infections. Acta Orthopaed. 2015;86:147–158.10.3109/17453674.2014.966290
  • Kapadia BH, Berg RA, Daley JA, et al. Periprosthetic joint infection. Lancet. 2015;387:386–394.
  • Kurtz SM, Lau E, Watson H, et al. Economic burden of periprosthetic joint infection in the United States. J Arthroplasty. 2012;27(Suppl. 1):61–65.10.1016/j.arth.2012.02.022
  • Baek SH. Identification and preoperative optimization of risk factors to prevent periprosthetic joint infection. World J Orthop. 2014;5:362–367.10.5312/wjo.v5.i3.362
  • Perdreau-Remington F, Stefanik D, Peters G, et al. A four-year prospective study on microbial ecology of explanted prosthetic hips in 52 patients with “aseptic” prosthetic joint loosening. Eur J Clin Microbiol Infect Dis. 1996;15:160–165.10.1007/BF01591491
  • Portillo ME, Salvadó M, Alier A, et al. Prosthesis failure within 2 years of implantation is highly predictive of infection. Clin Orthop Relat Res. 2013;471:3672–3678.10.1007/s11999-013-3200-7
  • Bereket W, Hemalatha K, Getenet B, et al. Update on bacterial nosocomial infections. Eur Rev Med Pharmacol Sci. 2012;16:1039–1044.
  • Meani E, Romanò C, Crosby L, et al, editors. Infection and local treatment in orthopedic surgery. Berlin Heidelberg New York: Springer; 2007. p. 396.
  • Simchi A, Tamjid E, Pishbin F, et al. Recent progress in inorganic and composite coatings with bactericidal capability for orthopedic applications. Nanomedicine. 2011;7:22–39.10.1016/j.nano.2010.10.005
  • Pye AD, Lockhart DEA, Dawson MP, et al. A review of dental implants and infection. J Hospital Infect. 2009;72:104–110.10.1016/j.jhin.2009.02.010
  • An YH, Friedman RJ. Concise review of mechanisms of bacterial adhesion to biomaterial surfaces. J Biomed Mater Res. 1998;43:338–348.10.1002/(ISSN)1097-4636
  • Hampton AA, Sherertz RJ. Vascular-access infections in hospitalized patients. Surg Clin North Am. 1998;68:57–71.
  • Hospenthal DR, Rinaldi MG, editors. Diagnosis and treatment of fungal infections. 2nd ed. Heidelberg New York Dordrecht London: Springer; 2015. p. 300.
  • Martin GS, Mannino DM, Eaton S, et al. The epidemiology of sepsis in the United States from 1979 through 2000. N Engl J Med. 2003;348:1546–1554.10.1056/NEJMoa022139
  • Green RJ, Davies MC, Roberts CJ, et al. Competitive protein adsorption as observed by surface plasmon resonance. Biomaterials. 1999;20:385–391.10.1016/S0142-9612(98)00201-4
  • Volfson D, Cookson S, Hasty J, et al. Biomechanical ordering of dense cell populations. PNAS. 2008;105:15346–15351.10.1073/pnas.0706805105
  • Peterson BW, He Y, Ren Y, et al. Viscoelasticity of biofilms and their recalcitrance to mechanical and chemical challenges. FEMS Microbiology Rev. 2015;39:234–245.10.1093/femsre/fuu008
  • Rimondini L, Cochis A, Varoni E, et al. Chapter: “Biofilm formation on implants and prosthetic dental materials”. In: Antoniac IV, editor. Handbook of bioceramics and biocomposites. Switzerland: Springer; 2015. p. 991–1027.
  • Rimondini L, Farè S, Brambilla E, et al. The effect of surface roughness on early in vivo plaque colonization on titanium. J Periodontol. 1997;68:556–562.10.1902/jop.1997.68.6.556
  • Teughels W, Van Assche N, Sliepen I, et al. Effect of material characteristics and/or surface topography on biofilm development. Clin Oral Implants Res. 2006;17(Suppl 2):68–81.10.1111/clr.2006.17.issue-s2
  • Crick CR, Ismail S, Pratten J, et al. An investigation into bacterial attachment to an elastomeric superhydrophobic surface prepared via aerosol assisted deposition. Thin Solid Films. 2011;519:3722–3727.10.1016/j.tsf.2011.01.282
  • Badihi Hauslich L, Sela MN, Steinberg D, et al. The adhesion of oral bacteria to modified titanium surfaces: role of plasma proteins and electrostatic forces. Clin Oral Implants Res. 2013;24:49–56.10.1111/j.1600-0501.2011.02364.x
  • Puckett SD, Raimondo T, Webster TJ. The relationship between the nanostructure of titanium surfaces and bacterial attachment. Biomaterials. 2010;31:706–713.10.1016/j.biomaterials.2009.09.081
  • Raulio M, Järn M, Ahola J, et al. Microbe-repelling coated stainless steel analysed by field emission scanning electron microscopy and physicochemical methods. J Ind Microbiol Biotechnol. 2008;35:751–760.10.1007/s10295-008-0343-8
  • Donlan RM. New approaches for the characterization of prosthetic joint biofilms. Clin Orthop Relat Res. 2005;437:12–19.10.1097/01.blo.0000175120.66051.29
  • Cadosch D, Al-Mushaiqri MS, Gautschi OP, et al. Biocorrosion and uptake of titanium by human osteoclasts. J Biomed Mater Research. 2010;95A:1004–1010.10.1002/jbm.a.v95a:4
  • Souza JCM, Henriques M, Oliveira R, et al. Do oral biofilms influence the wear and corrosion behavior of titanium? Biofouling. 2010;26:471–478.10.1080/08927011003767985
  • Niinomi M, editor. Metals for biomedical devices. UK: Woodhead Publ.; 2010. p. 420.10.1533/9781845699246
  • Okazaki Y, Rao S, Tateishi T, et al. Cytocompatibility of various metal and development of new titanium alloys for medical implants. Mater Sci Eng A. 1998;243:250–256.10.1016/S0921-5093(97)00809-5
  • Long M, Rack HJ. Titanium alloys in total joint replacement – a materials science perspective. Biomaterials. 1998;19:1621–1639.10.1016/S0142-9612(97)00146-4
  • Niinomi M. Biologically and mechanically biocompatible titanium alloys. Mater Trans. 2008;49:2170–2178.10.2320/matertrans.L-MRA2008828
  • Mabboux F, Ponsonnet L, Morrier JJ, et al. Surface free energy and bacterial retention to saliva-coated dental implants materials: an in vitro study. Colloids Surf B: Biointerfaces. 2004;38:199–205.10.1016/j.colsurfb.2004.08.002
  • Shibata Y, Tanimoto Y, Maruyama N, et al. A review of improved fixation methods for dental implants. Part I: Surface optimization for rapid osseointegration. J Prostodont Res. 2015;59:20–33.10.1016/j.jpor.2014.11.007
  • Shibata Y, Tanimoto Y, Maruyama N, et al. A review of improved fixation methods for dental implants. Part II: Biomechanical integrity at bone–implant interface. J Prostodont Res. 2015;59:84–95.10.1016/j.jpor.2015.01.003
  • Wall I, Donos N, Carlqvist K, et al. Modified titanium surfaces promote accelerated osteogenic differentiation of mesenchymal stromal cells in vitro. Bone. 2009;45:17–26.10.1016/j.bone.2009.03.662
  • Borsari V, Giavaresi G, Fini M, et al. Comparative in vitro study on ultra-high roughness and dense titanium coating. Biomaterials. 2005;26:4948–4955.10.1016/j.biomaterials.2005.01.010
  • Stevens MM, George JH. Exploring and engineering the cell surface interface. Science. 2005;310:1135–1138.10.1126/science.1106587
  • Gasik M, Van Mellaert L, Pierron D, et al. Reduction of biofilm infection risks and promotion of osteointegration for optimized surfaces of titanium implants. Adv Healthcare Mater. 2012;1:117–127.10.1002/adhm.201100006
  • Wong JY, Bronzino JD. Biomaterials. Boca Raton London New York: CRC Press, Taylor & Francis; 2007. p. 296.10.1201/9780849378898
  • Kurtz SM, editor. PEEK biomaterials handbook. William Andrew: Elsevier; 2012. p. 300.
  • Agrawal CM, Parr JE, Lin ST, editors. Biodegradable polymers for implants. ASTM STP1396; 2000. p. 174.
  • Hubbell JA. Biomaterials in tissue engineering. Nature Biotechnol. 1995;13:565–576.10.1038/nbt0695-565
  • Lansman S, Paakko P, Ryhanen J, et al. Poly-L/D lactide (PLDLA) 96/4 fibrous implants: histological evaluation in the subcutis of experimental design. J Craniofac Surg. 2006;17:1121–1128.10.1097/01.scs.0000231627.33382.85
  • Haaparanta AM, Jarvinen E, Cengiz IF, et al. Preparation and characterization of collagen/PLA, chitosan/PLA, and collagen/chitosan/PLA hybrid scaffolds for cartilage tissue engineering. J Mater Sci Mater Med. 2014;25:1129–1136.10.1007/s10856-013-5129-5
  • Rochford ETJ, Jaekel DJ, Hickok NJ, et al. Chapter “Bacterial interactions with polyaryletheretherketone. In: Kurtz SM, editor. PEEK biomaterials handbook. William Andrew: Elsevier; 2012. p. 93–117.10.1016/B978-1-4377-4463-7.10008-9
  • Whitehead KA, Verran J. The effect of surface topography on the retention of microorganisms. Food Bioprod Process. 2006;84:253–259.10.1205/fbp06035
  • Harris LG, Meredith DO, Eschbach L, et al. Staphylococcus aureus adhesion to standard micro-rough and electropolished implant materials. J Mater Sci Mater Med. 2007;18:1151–1156.10.1007/s10856-007-0143-0
  • Verheyen CCPM, Dhert WJA, de Blieck-Hogervorst JMA, et al. Adherence to a metal, polymer and composite by Staphylococcus aureus and Staphylococcus epidermidis. Biomaterials. 1993;14:383–391.10.1016/0142-9612(93)90059-B
  • DiGiulio M, D’Ercole S, Zara S, et al. Streptococcus mitis/human gingival fibroblasts co-culture: the best natural association in answer to the 2-hydroxoethyl methacrylate release. Acta Pathol Microbiol Immunol Scand. 2011;120:139–146.
  • Hosman AH, Bulstra SK, Sjollema J, et al. The influence of Co-Cr and UHMWPE particles on infection persistence: an in vivo study in mice. J Orthop Res. 2012;30:341–347.10.1002/jor.v30.3
  • Rimondini L, Cerroni L, Carrasi A, et al. Bacterial colonization of zirconia ceramic surfaces: an in vitro and in vivo study. Intern J Oral Maxillofac Implants. 2002;17:793–798.
  • Scarano A, Piattelli M, Caputi S, et al. Bacterial adhesion on commercially pure titanium and zirconium oxide disks: an in vivo human study. J Periodontol. 2004;75:292–296.10.1902/jop.2004.75.2.292
  • Scotti R, Kantorski KZ, Monaco C, et al. SEM evaluation of in situ early bacterial colonization on a Y-TZP ceramic: a pilot study. Int J Prosthodont. 2007;20:419–422.
  • Clement JL, Jarrett PS. Antibacterial silver. Met Based Drugs. 1994;1:467–482.
  • Matsumura Y, Yoshikata K, Kunisaki S, et al. Mode of bactericidal action of silver zeolite and its comparison with that of silver nitrate. Appl Environ Microbiol. 2003;69:4278–4281.10.1128/AEM.69.7.4278-4281.2003
  • Secinti KD, Ozalp H, Attar A, et al. Nanoparticle silver ion coatings inhibit biofilm formation on titanium implants. J Clin Neurosci. 2011;18:391–395.10.1016/j.jocn.2010.06.022
  • Esposito M, Grusovin MG, Loli V, et al. Does antibiotic prophylaxis at implant placement decrease early implant failures? A Cochrane systematic review. Eur J Oral Implantol. 2010;2:101–110.
  • Rompen E, Domken O, Degidi M, et al. The effect of material characteristics, of surface topography and of implant components and connections on soft tissue integration: a literature review. Clin Oral Implants Res. 2006;17(suppl. 2):55–67.10.1111/clr.2006.17.issue-s2
  • Nanci A. Ten Cate’s Oral Histology: Development, structure and function. 8th ed. Elsevier; 2013. p. 400.
  • Dudic A, Kiliaridis S, Mombelli A, et al. Composition changes in gingival crevicular fluid during orthodontic tooth movement: comparisons between tension and compression sides. Eur J Oral Sci. 2006;114:416–422.10.1111/eos.2006.114.issue-5
  • Närhi H. Characterization of soft tissue adhesion on the surface of dental biomaterials [ M.Sc. Thesis]. Finland: Aalto University; 2016. p. 97.
  • Iglhaut G, Schwarz F, Winter RR, et al. Epithelial attachment and downgrowth on dental implant abutments - A comprehensive review. J Esthet Restor Dent. 2014;26:324–331.10.1111/jerd.2014.26.issue-5
  • Eliades G, Eliades T, Brantley WA, et al, editors. Dental materials in vivo - aging and related phenomena. Chicago: Quintessence Publ. Co.; 2003. p. 283.
  • Byrne G. Fundamentals of implant dentistry. New York: John Wiley & Sons Inc; 2014. p. 264.
  • Lindhe J, Berglundh T. The interface between the mucosa and the implant. Periodontol. 1998;17:47–54.10.1111/prd.1998.17.issue-1
  • Boas Nogueira AV, Nokhbehsaim M, Eick S, et al. Biomechanical loading modulates proinflammatory and bone resorptive mediators in bacterial-stimulated PDL cells. Mediators Inflamm. 2014. article ID 425421.
  • Krishnan V, Davidovitch Z. On a path to unfolding the biological mechanisms of orthodontic tooth movement. J Dental Res. 2009;88:597–608.10.1177/0022034509338914
  • Preis V, Behr M, Kolbeck C, et al. Wear performance of substructure ceramics and veneering porcelains. Dent Mater. 2011;27:796–804.10.1016/j.dental.2011.04.001
  • Gasik M. Advances in biomaterials simulation and evaluation procedures. Proc 1st Intern Symp On Creation of Life Innovation Materials, JWRI, Osaka, Japan. 2016;3:3–4.
  • Gasik M. New BEST - biomaterials enhanced simulation test. ALTEX Proc. 2014;3:33–34.
  • Gasik M. In vitro test method for implant materials. US Patent No. 9,683,267, Patent App. US2014/0038175; 2017.
  • Natali AN, Pavan PG, Scarpa C. Numerical analysis of tooth mobility: formulation of a non-linear constitutive law for the periodontal ligament. Dent Mater. 2004;20:623–629.10.1016/j.dental.2003.08.003
  • Lin JD, Lee J, Özcoban H, et al. Biomechanical adaptation of the bone-periodontal ligament (PDL)-tooth fibrous joint as a consequence of disease. J Biomech. 2014;47:2102–2114.10.1016/j.jbiomech.2013.10.059
  • Abdulmajeed AA, Willberg J. In vitro assessment of the soft tissue / implant interface using porcine gingival explants. J Mater Sci Mater Medicine. 2015;26:1–7.
  • Kocen R, Gasik M, Gantar A, et al. Viscoelastic behaviour of hydrogel-based composites for tissue engineering under mechanical load. Biomed Mater. 2017;12:025004.10.1088/1748-605X/aa5b00
  • Gasik M, Hiropoulos I, Zühlke A, et al. Biomechanical comparison for commercial and novel scaffolds for articular cartilage repair. Orthopaed Proc. 2017;99B(Supp. 1):79.