2,909
Views
11
CrossRef citations to date
0
Altmetric
Bio-inspired and biomedical materials

Controlled Fab installation onto polymeric micelle nanoparticles for tuned bioactivity

, , , , , , , & show all
Pages 666-680 | Received 30 Jun 2017, Accepted 18 Aug 2017, Published online: 20 Sep 2017

References

  • Dand NM, Patel PB, Ayre AP, et al. Polymeric micelles as a drug carrier for tumor targeting. Chron Young Sci. 2013;4:94–101.
  • Ling D, Hackett MJ, Hyeon T. Surface ligands in synthesis, modification, assembly and biomedical applications of nanoparticles. Nano Today. 2014;9:457–477.10.1016/j.nantod.2014.06.005
  • Katz E, Willner I. Integrated nanoparticle-biomolecule hybrid system: synthesis, properties and application. Angew Chem Int Edit. 2004;43:6042–6108.10.1002/(ISSN)1521-3773
  • Allen TM. Ligand-targeted therapeutics in anticancer therapy. Nat Rev Cancer. 2002;2:750–763.10.1038/nrc903
  • Wei X, Chen X, Ying M, et al. Brain tumor-targeted drug delivery strategies. Acta Pharm Sin B. 2014;4:193–201.10.1016/j.apsb.2014.03.001
  • Mi P, Yanigie H, Dewi N, et al. Block copolymer-boron cluster conjugate for effective boron neutron capture therapy of solid tumors. J Control Release. 2017;254:1–9.10.1016/j.jconrel.2017.03.036
  • Peng Y, Li X, Yuan R, et al. Steric hindrance inhibition of strand displacement for homogeneous and signal-on fluorescence detection of human serum antibodies. Chem Commun. 2016;52:12586–12589.10.1039/C6CC06893F
  • Kühn T, Ihalainen TO, Hyväluoma J, et al. Protein diffusion in mammalian cell cytoplasm. PLoS One. 2011;6;8:e22962.
  • Kobayashi T, Yokota M, Mitani T, et al. Effects of solvent displacement on sensitivity and specificity of monoclonal antibodies for ABO blood grouping of forensic specimens with an absorption-elution test. Leg Med. 1991;1:68–75.
  • Schrama D, Reisfeld RA, Becker JC. Antibody targeted drugs as cancer therapeutics. Nat Rev Drug Discov. 2006;5:147–159.10.1038/nrd1957
  • Trilling AK, Beekwilder J, Zuilhof H. Antibody orientation on biosensor surfaces: a minireview. Analyst. 2013;138:1619–1627.10.1039/c2an36787d
  • Belbekhouche S, Guerrouache M, Carbonnier B. Thiol-maleimide Michael addition click reaction: a new route to surface modification of porous polymeric monolith. Macromol Chem Phys. 2016;217:997–1006.10.1002/macp.v217.8
  • Yamagishi K, Sawaki K, Murata A, et al. A Cu-free clickable fluorescent probe for intracellular targeting of small biomolecules. Chem Commun. 2015;51:7879–7882.10.1039/C4CC09947H
  • Kumar S, Aaron J, Sokolov K. Directional conjugation of antibodies to nanoparticles for synthesis of multiplexed optical contrast agents with both delivery and targeting moieties. Nat Protoc. 2008;3:314–320.10.1038/nprot.2008.1
  • Florinas S, Liu M, Fleming R, et al. A nanoparticle platform to evaluate bioconjugation and receptor-mediated cell uptake using cross-linked polyion complex micelles bearing antibody fragments. Biomacromolecules. 2016;17:1818–1833.10.1021/acs.biomac.6b00239
  • Ahn J, Miura Y, Yamada N, et al. Antibody fragment-conjugated polymeric micelles incorporating platinum drugs for targeted therapy of pancreatic cancer. Biomaterials. 2015;39:23–30.10.1016/j.biomaterials.2014.10.069
  • Nakanishi M, Park JS, Jang WD, et al. Study of the quantitative aminolysis reaction of poly(β-benzyl l-aspartate) (PBLA) as a platform polymer for functionality materials. React Funct Polym. 2007;67:1361–1372.10.1016/j.reactfunctpolym.2007.08.009
  • Takeda KM, Yamasaki Y, Dirisala A, et al. Effect of shear stress on structure and function of polyplex micelles from poly(ethylene glycol)-poly(l-lysine) block copolymers as systemic gene delivery carrier. Biomaterials. 2017;126:31–38.10.1016/j.biomaterials.2017.02.012
  • Quader S, Cabral H, Mochida Y, et al. Selective intracellular delivery of proteasome inhibitors through pH-sensitive polymeric micelles directed to efficient antitumor therapy. J Control Release. 2014;188:67–77.10.1016/j.jconrel.2014.05.048
  • Moradi E, Vllasaliu D, Garnett M, et al. Ligand density and clustering effects on endocytosis of folate modified nanoparticles. RSC Adv. 2012;2:3025–3033.10.1039/c2ra01168a
  • Elias DR, Poloukhtine A, Popik V, et al. Effect of ligand density, receptor density, and nanoparticle size on cell targeting. Nanomedicine. 2013;9:194–201.10.1016/j.nano.2012.05.015
  • Miura Y, Takenaka T, Toh K, et al. Cyclic RGD-linked polymeric micelles for targeted delivery of platinum anticancer drugs to glioblastoma through the blood–brain tumor barrier. ACS Nano. 2013;7:8583–8592.10.1021/nn402662d
  • Alam MR, Ming X, Fisher M, et al. Multivalent cyclic RGD conjugates for targeted delivery of small interfering RNA. Bioconjugate Chem. 2011;22:1673–1681.10.1021/bc200235q
  • Thirumurugan P, Matosiuk D, Jozwiak K. Click chemistry for drug development and diverse chemical–biology applications. Chem Rev. 2013;113:4905–4979.10.1021/cr200409f
  • Ramesh M, Ahlawat P, Srinivas NR. Irinotecan and its active metabolite, SN-38: review of bioanalytical methods and recent update from clinical pharmacology perspectives. Biomed Chrom. 2010;24:104–123.10.1002/bmc.v24:1
  • Govindan SV, Cardillo TM, Sharkey RM, et al. Milatuzumab-SN-38 conjugates for the treatment of CD74+ cancers. Mol Cancer Ther. 2013;12:968–978.10.1158/1535-7163.MCT-12-1170
  • Dubowchik GM, Firestone RA, Padilla L, et al. Cathepsin B-labile dipeptide linkers for lysosomal release of doxorubicin from internalizing immunoconjugates: model studies of enzymatic drug release and antigen-specific in vitro anticancer activity. Bioconjugate Chem. 2002;13:855–869.10.1021/bc025536j
  • Nair DP, Podgórski M, Chatani S, et al. The thiol-michael addition click reaction: a powerful and widely used tool in materials chemistry. Chem Mater. 2014;26:724–744.10.1021/cm402180t
  • Lu J, Jiang F, Lu A, et al. Linkers having a crucial role in antibody–drug conjugates. Int J Mol Sci. 2016;17:561.10.3390/ijms17040561
  • Ritchie M, Tchistiakova L, Scott N. Implications of receptor-mediated endocytosis and intracellular trafficking dynamics in the development of antibody drug conjugates. Mabs. 2013;5:13–21.10.4161/mabs.22854
  • Austin CD, De Mazière AM, Pisacane PI, et al. Endocytosis and sorting of ErbB2 and the site of action of cancer therapeutics trastuzumab and geldanamycin. Mol Biol Cell. 2004;15:5268–5282.10.1091/mbc.E04-07-0591
  • Friedman AD, Claypool SE, Liu R. The smart targeting of nanoparticles. Curr Pharm Des. 2013;19:6315–6329.10.2174/13816128113199990375
  • Yin L. Measuring binding kinetics of antibody-conjugated goldnanoparticles with intact cells. Small. 2015;11:3782–3788.10.1002/smll.v11.31
  • Fay F, Scott CJ. Antibody-targeted nanoparticles for cancer therapy. Immunotherapy. 2011;3:381–394.10.2217/imt.11.5
  • Saha B, Evers TH, Prins MWJ. How antibody surface coverage on nanoparticles determines the activity and kinetics of antigen capturing for biosensing. Anal Chem. 2014;86:8158–8166.10.1021/ac501536z
  • Bandyopadhyay A, Fine RL, Demento S, et al. The impact of nanoparticle ligand density on dendritic-cell targeted vaccines. Biomaterials. 2011;32:3094–3105.10.1016/j.biomaterials.2010.12.054
  • Jackson D, Gooya J, Mao S, et al. A human antibody-drug conjugate targeting EphA2 inhibits tumor growth in vivo. Cancer Res. 2008;68:9367–9374.10.1158/0008-5472.CAN-08-1933