2,908
Views
19
CrossRef citations to date
0
Altmetric
Focus on Carbon-neutral Energy Science and Technology

Effect of amine structure on CO2 capture by polymeric membranes

ORCID Icon, , &
Pages 950-958 | Received 27 Jun 2017, Accepted 27 Oct 2017, Published online: 22 Nov 2017

References

  • Framework Convention on Climate Change. United Nations: The Paris Agreement; [cited 2017 Jun 15]. Available from: http://bigpicture.unfccc.int/#content-the-paris-agreemen
  • International Energy Agency. 20 years of carbon capture and storage. [cited 2017 Jun 15]. Available from: https://www.iea.org/publications/freepublications/publication/20-years-of-carbon-capture-and-storage.html
  • Metz B, Davidson O, de Coninck H, et al. Carbon dioxide capture and storage: IPCC special report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press; 2005.
  • Kumar S, Cho JH, Moon IL. Ionic liquid-amine blends and CO2BOLs: prospective solvents for natural gas sweetening and CO2 capture technology – a review. Int J Greenhouse Gas Control. 2014;20:87–116.10.1016/j.ijggc.2013.10.019
  • Sharma SD, Azzi M. A critical review of existing strategies for emission control in the monoethanolamine-based carbon capture process and some recommendations for improved strategies. Fuel. 2014;121:178–188.10.1016/j.fuel.2013.12.023
  • Yang HQ, Xu ZH, Fan MH, et al. Progress in carbon dioxide separation and capture: a review. J Environ Sci. 2008;20:14–27.10.1016/S1001-0742(08)60002-9
  • Li JR, Ma YG, McCarthy MC, et al. Carbon dioxide capture-related gas adsorption and separation in metal-organic frameworks. Coord Chem Rev. 2011;15–16:1791–1823.10.1016/j.ccr.2011.02.012
  • Wang S, Li X, Wu H, et al. Advances in high permeability polymer-based membrane materials for CO2 separations. Energy Environ. Sci. 2016;9:1863–1890.10.1039/C6EE00811A
  • Yampolskii Y, Pinnau I, Freeman BD. Materials science of membranes. West Sussex: Wiley; 2007.
  • Kovvali AS, Sirkar KK. Dendrimer liquid membranes: CO2 separation from gas mixtures. Ind Eng Chem Res. 2001;40:2502–2511.10.1021/ie0010520
  • Zou J, Ho WSW. CO2-selective polymeric membranes containing amines in crosslinked poly(vinyl alcohol). J Membr Sci. 2006;286:310–321.10.1016/j.memsci.2006.10.013
  • Myers C, Pennline H, Luebke D, et al. High temperature separation of carbon dioxide/hydrogen mixtures using facilitated supported ionic liquid membranes. J Membr Sci. 2008;322:28–31.10.1016/j.memsci.2008.04.062
  • Deng LY, Kim TJ, Hagg MB. Facilitated transport of CO2 in novel PVAm/PVA blend membrane. J Membr Sci. 2009;340:154–163.10.1016/j.memsci.2009.05.019
  • Hussain A, Hagg MB. A feasibility study of CO2 capture from flue gas by a facilitated transport membrane. J Membr Sci. 2010;359:140–148.10.1016/j.memsci.2009.11.035
  • Tong Z, Ho WSW. Facilitated transport membranes for CO2 separation and capture. Sep Purif Technol. 2017;52:156–167.
  • Kovvali AS, Chen H, Sirkar K. Dendrimer membranes: a CO2-selective molecular gate. J Am Chem Soc. 2000;122:7594–7595.10.1021/ja0013071
  • Taniguchi I, Duan S, Kazama S, et al. Facile fabrication of a novel high performance CO2 separation membrane: immobilization of poly(amidoamine) dendrimers in poly(ethylene glycol) networks. J Membr Sci. 2008;322:277–280.10.1016/j.memsci.2008.05.067
  • Taniguchi I, Duan S, Kai T, et al. Effect of phase-separated structure on CO2 separation performance of poly(amidoamine) dendrimer immobilized in a poly(ethylene glycol) network. J Mater Chem A. 2013;1:14514–14523.10.1039/c3ta13711b
  • Taniguchi I, Urai H, Kai T, et al. A CO2-selective molecular gate of poly(amidoamine) dendrimer immobilized in a poly(ethylene glycol) network. J Membr Sci. 2013;444:96–100.10.1016/j.memsci.2013.05.017
  • Taniguchi I, Kai T, Duan S, et al. A compatible crosslinker for enhancement of CO2 capture of poly(amidoamine) dendrimer-containing polymeric membranes. J Membr Sci. 2015;475:175–183.10.1016/j.memsci.2014.10.015
  • Duan S, Taniguchi I, Kai T, et al. Poly(amidoamine) dendrimer/poly(vinyl alcohol) hybrid membranes for CO2 capture. J Membr Sci. 2012;423–424:107–112.10.1016/j.memsci.2012.07.037
  • Gaume J, Wong-Wah-Chung P, Rivaton A, et al. Photochemical behavior of PVA as an oxygen-barrier polymer for solar cell encapsulation. RSC Adv. 2011;1:1471–1481.10.1039/c1ra00350j
  • Reynolds AJ, Verheyen TV, Adeloju SB, et al. Towards commercial scale postcombustion capture of CO2 with monoethanolamine solvent: key considerations for solvent management and environmental impacts. Environ Sci Technol. 2012;46:3643–3654.10.1021/es204051s
  • Zhao M, Minett AI, Harris AT. A review of techno-economic models for the retrofitting of conventional pulverised-coal power plants for post-combustion capture (PCC) of CO2. Energy Environ Sci. 2013;6:25–40.10.1039/C2EE22890D
  • Taniguchi I, Kazama S, Jinnai H. Structural analysis of poly(amidoamine) dendrimer immobilized in cross-linked poly(ethylene glycol). J Polym Sci B. 2012;50:1156–1164.10.1002/polb.v50.16
  • Merkel TC, Lin H, Wei X, et al. Power plant post-combustion carbon dioxide capture: an opportunity for membranes. J Membr Sci. 2010;359:126–139.10.1016/j.memsci.2009.10.041
  • Yamada H, Chowdhury FA, Goto K, et al. CO2 solubility and species distribution in aqueous solutions of 2-(isopropylamino)ethanol and its structural isomers. Int J Greenhouse Gas Control. 2013;17:99–105.10.1016/j.ijggc.2013.03.027
  • Xie H-B, Johnson JK, Perry RJ, et al. A computational study of the heats of reaction of substituted monoethanolamine with CO2. J Phys Chem A. 2011;115:342–350.10.1021/jp1081627
  • Kimura S, Honda K, Kitamura K, et al. Preliminary feasibility study for on-site hydrogen station with distributed CO2 capture and storage system. Energy Proc. 2014;63:4575–4584.10.1016/j.egypro.2014.11.490