5,710
Views
54
CrossRef citations to date
0
Altmetric
Focus on Nanocellulose-based Materials

Dehydration of bacterial cellulose and the water content effects on its viscoelastic and electrochemical properties

, , , , & ORCID Icon
Pages 203-211 | Received 22 Aug 2017, Accepted 18 Jan 2018, Published online: 09 Mar 2018

References

  • Wang H , Zhu E , Yang J , et al . Bacterial cellulose nanofiber-supported polyaniline nanocomposites with flake-shaped morphology as supercapacitor electrodes. J Phys Chem C. 2012;116:13013–13019. DOI:10.1021/jp301099r.
  • Lin S , Calvar I , Catchmark J , et al . Biosynthesis, production and applications of bacterial cellulose. Cellulose. 2013;20:2191–2219. DOI:10.1007/s10570-013-9994-3.
  • Esa F , Tasirin SM , Rahman NA . Overview of bacterial cellulose production and application. Agric Agric Sci Procedia. 2014;2:113–119. DOI:10.1016/j.aaspro.2014.11.017.
  • Navarra MA , Dal Bosco C , Serra Moreno J , et al . Synthesis and characterization of cellulose-based hydrogels to be used as gel electrolytes. Membranes. 2015;5:810–823. DOI:10.3390/membranes5040810.
  • Shi Z , Li Y , Chen X , et al . Double network bacterial cellulose hydrogel to build a biology-device interface. Nanoscale. 2014;6:970–977. DOI:10.1039/c3nr05214a.
  • Huang Y , Zhu C , Yang J , et al . Recent advances in bacterial cellulose. Cellulose. 2013;21:1–30. DOI:10.1007/s10570-013-0088-z.
  • Feng Y , Zhang X , Shen Y , et al . A mechanically strong, flexible and conductive film based on bacterial cellulose/graphene nanocomposite. Carbohydr Polym. 2012;87:644–649. DOI:10.1016/j.carbpol.2011.08.039.
  • Petersen N , Gatenholm P . Bacterial cellulose-based materials and medical devices: current state and perspectives. Appl Microbiol Biotechnol. 2011;91:1277–1286. DOI:10.1007/s00253-011-3432-y.
  • Gao X , Shi Z , Kuśmierczyk P , et al . Time-dependent rheological behaviour of bacterial cellulose hydrogel. Mater Sci Eng C. 2016;58:153–159. DOI:10.1016/j.msec.2015.08.019.
  • Puisto A , Illa X , Mohtaschemi M , et al . Modeling the rheology of nanocellulose suspensions The hygroscopic power of amorphous cellulose: a modeling study. Carbohydr Polym. 2015;117:585–591. DOI:10.1016/J.CARBPOL.2014.09.095.
  • Bedane AH , Eić M , Farmahini-Farahani M , et al . Theoretical modeling of water vapor transport in cellulose-based materials. Cellulose. 2016;23:1537–1552. DOI:10.1007/s10570-016-0917-y.
  • Heidland A , Fazeli G , Klassen A , et al . Neuromuscular electrostimulation techniques: historical aspects and current possibilities in treatment of pain and muscle waisting. Clin Nephrol. 2013;79(Suppl 1):S12–23.
  • Clasen C , Sultanova B , Wilhelms T , et al . Effects of different drying processes on the material properties of bacterial cellulose membranes. Macromol Symp. 2006;244:48–58. DOI:10.1002/masy.200651204.
  • Guhados G , Wan W , Hutter JL . Measurement of the elastic modulus of single bacterial cellulose fibers using atomic force microscopy. Langmuir. 2005;21:6642–6646. DOI:10.1021/la0504311.
  • Okiyama A , Motoki M , Yamanaka S . Bacterial cellulose II. Processing of the gelatinous cellulose for food materials. Food Hydrocoll. 1992;6:479–487. DOI:10.1016/S0268-005X(09)80033-7.
  • Cortázar TM , Guzmán-Alonso M , Novoa H , et al . Comparative study of temporary effect on the water content at different depths of the skin by hot and cold moisturizing formulations. Ski Res Technol. 2015;21:265–271. DOI:10.1111/srt.12185.
  • Svensson A , Nicklasson E , Harrah T , et al . Bacterial cellulose as a potential scaffold for tissue engineering of cartilage. Biomaterials. 2005;26:419–431. DOI:10.1016/j.biomaterials.2004.02.049.
  • Navaei A , Truong D , Heffernan J , et al . PNIPAAm-based biohybrid injectable hydrogel for cardiac tissue engineering. Acta Biomater. 2016;32:10–23. DOI:10.1016/j.actbio.2015.12.019.
  • Lina F , Yue Z , Jin Z , et al . Bacterial cellulose for skin repair materials. In: Fazel-Rezai, R ., editor. InTech. Rijeka; 2011. Doi: 10.5772/24323
  • Bäckdahl H , Helenius G , Bodin A , et al . Mechanical properties of bacterial cellulose and interactions with smooth muscle cells. Biomaterials. 2006;27:2141–2149. DOI:10.1016/j.biomaterials.2005.10.026.
  • Zang S , Zhang R , Chen H , et al . Investigation on artificial blood vessels prepared from bacterial cellulose. Mater Sci Eng C. 2015;46:111–117. DOI:10.1016/j.msec.2014.10.023.
  • Gofman IV , Buyanov AL . Unusual effect evidenced at the investigations of the mechanical behavior of composite hydrogels under cyclic compression. J Mech Behav Biomed Mater. 2017;71:238–243. DOI:10.1016/j.jmbbm.2017.03.030.
  • Chen DTN , Wen Q , Janmey PA , et al . Rheology of soft materials. Annu Rev Condens Matter Phys. 2010;1:301–322. DOI:10.1146/annurev-conmatphys-070909-104120.
  • Müller F , Ferreira CA , Azambuja DS , et al . Measuring the proton conductivity of ion-exchange membranes using electrochemical impedance spectroscopy and through-plane cell. J Phys Chem B. 2014;118:1102–1112. DOI:10.1021/jp409675z.
  • Zhang SS , Xu K , Jow TR . Electrochemical impedance study on the low temperature of Li-ion batteries. Electrochim Acta. 2004;49:1057–1061. DOI:10.1016/J.ELECTACTA.2003.10.016.
  • Mitra SK , Ragunathan P , Nayar MG . Porous nickel electrodes in water electrolysis 2. Use of porous nickel electrodes in multicell module. Int J Hydrog Energy. 1981;6:497–507.10.1016/0360-3199(81)90081-1
  • Stafford OA , Hinderliter BR , Croll SG . Electrochemical impedance spectroscopy response of water uptake in organic coatings by finite element methods. Electrochim Acta. 2006;52:1339–1348. DOI:10.1016/J.ELECTACTA.2006.07.047.