2,710
Views
16
CrossRef citations to date
0
Altmetric
Optical, magnetic and electronic device materials

Tunable near-infrared epsilon-near-zero and plasmonic properties of Ag-ITO co-sputtered composite films

, , & ORCID Icon
Pages 174-184 | Received 06 Dec 2017, Accepted 22 Jan 2018, Published online: 19 Feb 2018

References

  • Maier SA . Plasmonics: fundamentals and applications. New York (NY): Springer; 2007.
  • Cai W , Shalaev VM . Optical metamaterials: fundamentals and applications. New York (NY): Springer; 2010.
  • Boltasseva A , Atwater H . Low-loss plasmonic metamaterials. Science. 2011;331:290–291.
  • Naik GV , Shalaev VM , Boltasseva A . Alternative plasmonic materials: beyond gold and silver. Adv Mater. 2013;25:3264–3294.
  • Naik GV , Kim J , Boltasseva A . Oxides and nitrides as alternative plasmonic materials in the optical range. Opt Mater Express. 2011;1:1090–1099.
  • Vakil A , Engheta A . Transformation optics using graphene. Science. 2011;332:1291–1294.
  • Rhodes C , Franzen S , Maria JP , et al . Surface plasmon resonance in conducting metal oxides. J Appl Phys. 2006;100:054905.
  • Naik GV , Liu J , Kildishev AV , et al . Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials. PNAS. 2012;109(23):8834–8838.
  • Calzolari A , Ruini A , Catellani A . Transparent conductive oxides as near-IR plasmonic materials: the case of Al-doped ZnO derivatives. ACS Photon. 2014;1:703–709.
  • Guler U , Shalaev VM , Boltasseva A . Nanoparticle plasmonics: going practical with transition metal nitrides. Mater Today. 2015;18(4):227–237.
  • Liberal I , Engheta N . Near-zero refractive index photonics. Nat photon. 2017;11:149–158.
  • Kinsey N , DeVault C , Kim J , et al . Epsilon-near-zero Al-doped ZnO for ultrafast switching at telecom wavelengths: outpacing the traditional amplitude-bandwidth trade-off. Optica. 2015;2(7):616–622.
  • Alam MZ , DeLeon I , Boyd RW . Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region. Science. 2016;352(6287):795–797.
  • Caspani L , Kaipurath R , Clerici M , et al . Enhanced nonlinear refractive index in ε-near-zero materials. Phys Rev Lett. 2016;116:233901.
  • Khurgin J . Replacing metals with alternative plasmonic substances in plasmonics and metamaterials: is it a good idea? International Congress on Advanced Electromagnetic Materials in Microwaves & Optics. 2016;169–171.
  • Guo P , Schaller R , Ketterson J , et al . Ultrafast switching of tunable infrared plasmons in indium tin oxide nanorod arrays with large absolute amplitude. Nat Photon. 2016;10:267–273.
  • Li S , Guo P , Buchholz D , et al . Plasmonic−photonic mode coupling in indium-tin-oxide nanorod arrays. ACS Photon. 2014;1:163–172.
  • Kim J , Choudhury S , DeVault C , et al . Controlling the polarization state of light with plasmonic metal oxide metasurface. ACS Nano. 2016;10:9326–9333.
  • Dastmalchi B , Tassin P , Koschny T , et al . A new perspective on plasmonics: confinement and propagation length of surface plasmons for different materials and geometries. Adv Opt Mater. 2016;4:177–184.
  • Kim J , Dutta A , Memarzadeh B , et al . Zinc oxide based plasmonic multilayer resonator: localized and gap surface plasmon in the infrared. ACS Photon. 2015;2:1224–1230.
  • Gordon TR , Paik T , Klein D , et al . Shape-dependent plasmonic response and directed self-assembly in a new semiconductor building block, indium-doped cadmium oxide (ICO). Nano Lett. 2013;13:2857–2863.
  • Fang X , Mak CL , Dai J , et al . ITO/Au/ITO sandwich structure for near-infrared plasmonics. ACS Appl Mater Interfaces. 2014;6:15743–15752.
  • Guske J , Brown J , Welsh A , et al . Infrared surface plasmon resonance of AZO–Ag–AZO sandwich thin films. Opt Express. 2012;20(21):23215–23226.
  • Poddubny A , Iorsh I , Belov P , et al . Hyperbolic metamaterials. Nat Photon. 2013;7(12):948–957.
  • Kumar M , Kulriya P , Pivin J , et al . Evolution and tailoring of plasmonic properties in Ag:ZrO2 nanocomposite films by swift heavy ion irradiation. J Appl Phys. 2011;109:044311.
  • Kumar M , Sandeep C , Kumar G , et al . Plasmonic and nonlinear optical absorption properties of Ag:ZrO2 nanocomposite thin films. Plasmonics. 2014;9:129–136.
  • Sadeghi H , Zolanvar A , Ranjgar A . Optical properties of SiC/AZO plasmonic nano composite at infrared frequencies. Opt Quant Electron. 2015;47:2793–2802.
  • Houng B . Tin doped indium oxide transparent conducting thin films containing silver nanoparticles by sol-gel technique. Appl Phys Lett. 2005;87:251922.
  • Sun ZQ , Xiao L , Cao C , et al . Study on optical constants of ITO: Ag nanocompsite films. Appl Opt. 2009;48(30):5759–5763.
  • Sadeghi H , Ranjgar A , Zolanvar A . Metamaterial composed of coated nano-spheres at infrared frequencies. Eur Phys J Plus. 2015;130:50.
  • Sadeghi H , Zolanvar A , Ranjgar A , et al . Terahertz response of ZnS/Ge and ZnO/Ge nanostructured composites. Plasmonics. 2014;9:327–333.
  • Sernelius BE . Surface modes in physics. Berlin: Wiley VCH; 2001.
  • D’Elia S , Scaramuzza N , Ciuchi F , et al . Ellipsometry investigation of the effects of annealing temperature on the optical properties of indium tin oxide thin films studied by Drude–Lorentz model. Appl Surf Sci. 2009;255:7203–7211.
  • Tompkins HG , Irene EA . Handbook of ellipsometry. New York (NY): Springer; 2005.
  • Eldlio M , Che F , Cada M . IAENG transactions on engineering technologies. New York (NY): Springer; 2014. Chapter 4, Drude–Lorentz Model of semiconductor optical plasmons; p. 41–49.
  • Dominici L , Michelotti F , Brown T , et al . Plasmon polaritons in the near infrared on fluorine doped tin oxide films. Opt Express. 2009;17(12):10155–10167.
  • Niklasson G , Granqvist C , Hunderi O . Effective medium models for the optical properties of inhomogeneous materials. Appl Opt. 1981;20(1):26–30.
  • Fang X , Mak CL , Zhang S , et al . Pulsed laser deposited indium tin oxides as alternatives to noble metals in the near-infrared region. J Phys Condens Matter. 2016;28:224009.
  • Kim J , Kang T , Kwon S , et al . Transparent conductive ITO/Ag/ITO electrode deposited at room temperature for organic solar cells. J Electron Mater. 2017;46(1):306–311.
  • Kim J , Naik GV , Emani N , et al . Plasmonic resonances in nanostructured transparent conducting oxide films. IEEE J Sel Top Quantum Electron. 2013;19(3):4601907.
  • Noginov MA , Gu L , Livenere J , et al . Transparent conductive oxides: plasmonic materials for telecom wavelengths. Appl Phys Lett. 2011;99:021101.
  • Li S , Guo P , Zhang L , et al . Infrared plasmonics with indium-tin-oxide nanorod arrays. ACS Nano. 2011;5(11):9161–9170.
  • Pradhan AK , Mundle R , Santiago K , et al . Extreme tunability in aluminum doped zinc oxide plasmonic materials for near-infrared applications. Sci Rep. 2014;4(6415):1–6.
  • Kim H , Osofsky M , Prokes SM , et al . Optimization of Al-doped ZnO films for low loss plasmonic materials at telecommunication wavelengths. Appl Phys Lett. 2013;102:171103.
  • Rhodes C , Cerruti M , Efremenko A , et al . Dependence of plasmon polaritons on the thickness of indium tin oxide thin films. J Appl Phys. 2008;103:093108.
  • Michelotti F , Dominici L , Descrovi E , et al . Thickness dependence of surface plasmon polariton dispersion in transparent conducting oxide films at 1.55 μm. Opt Lett. 2009;34:839–841.
  • Zhu T , Zhou Y , Lou Y , et al . Plasmonic computing of spatial differentiation. Nat Commun. 2017;8:15391.
  • Guo P , Scaller R , Ocola L , et al . Large optical nonlinearity of ITO nanorods for sub-picosecond all-optical modulation of the full-visible spectrum. Nat Commun. 2016;7:1–10.
  • Guo P , Chang RPH , Schaller R . Transient negative optical nonlinearity of indium oxide nanorod arrays in the full-visible range. ACS Photon. 2017;4(6):1494–1500.
  • Feng S , Halterman K . Coherent perfect absorption in epsilon-near-zero metamaterials. Phys Rev B. 2012;86(16):755–759.
  • Luk TS , Campione S , Kim I , et al . Directional perfect absorption using deep subwavelength low permittivity films. Phys Rev B. 2014;90(8):085411.
  • Badsha MA , Jun YC , Chang KH . Admittance matching analysis of perfect absorption in unpatterned thin films. Opt Commun. 2014;332(4):206–213.
  • Yoon J , Zhou M , Badsha MA , et al . Broadband epsilon-near-zero perfect absorption in the near-infrared. Sci Rep. 2015;5:12788.
  • Rensberg J , Zhou Y , Richter S , et al . Epsilon-near-zero substrate engineering for ultrathin-film perfect absorbers. Phys Rev Appl. 2017;8(1):014009.
  • Chen C , Ye H . Fabrication and optimization of ITO-Ag co-sputtered nanocomposite films as plasmonic materials in the near-infrared region. Proc of SPIE. 2017;10112:101121I. DOI:10.1117/12.2251255