9,599
Views
112
CrossRef citations to date
0
Altmetric
Engineering and Structural materials

Selective laser melting of high-performance pure tungsten: parameter design, densification behavior and mechanical properties

ORCID Icon, , , , &
Pages 370-380 | Received 04 Dec 2017, Accepted 18 Mar 2018, Published online: 18 Apr 2018

References

  • Zhang X , Yan Q , Lang S , et al . Preparation of pure tungsten via various rolling methods and their influence on macro-texture and mechanical properties. Mater Des. 2017;126:1–11.
  • Huang L , Jiang L , Topping TD , et al . In situ oxide dispersion strengthened tungsten alloys with high compressive strength and high strain-to-failure. Acta Mater. 2017;122:19–31.10.1016/j.actamat.2016.09.034
  • Koyanagi T , Kumar NAPK , Hwang T , et al . Microstructural evolution of pure tungsten neutron irradiated with a mixed energy spectrum. J Nucl Mater. 2017;490:66–74.10.1016/j.jnucmat.2017.04.010
  • Valles G , Panizo-Laiz M , González C , et al . Influence of grain boundaries on the radiation-induced defects and hydrogen in nanostructured and coarse-grained tungsten. Acta Mater. 2017;122:277–286.10.1016/j.actamat.2016.10.007
  • Zhou X , Liu X , Zhang D , et al . Balling phenomena in selective laser melted tungsten. J Mater Process Technol. 2015;222:33–42.10.1016/j.jmatprotec.2015.02.032
  • Parish CM , Wang K , Doerner RP , et al . Grain orientations and grain boundaries in tungsten nonotendril fuzz grown under divertor-like conditions. Scri Mater. 2017;127:132–135.10.1016/j.scriptamat.2016.09.018
  • Ma J , Zhang J , Liu W , et al . Suppressing pore-boundary separation during spark plasma sintering of tungsten. J Nucl Mater. 2013;438:199–203.10.1016/j.jnucmat.2013.03.042
  • Erik L , Schubert W-D . Tungsten: properties, chemistry, technology of the element, alloys, and chemical compounds. Berlin: Springer Science & Business Media; 2012.
  • Olakanmi EO , Cochrane RF , Dalgarno KW . A review on selective laser sintering/melting (SLS/SLM) of aluminium alloy powders: Processing, microstructure, and properties. Prog Mater Sci. 2015;74:401–477.10.1016/j.pmatsci.2015.03.002
  • Gu DD , Meiners W , Wissenbach K , et al . Laser additive manufacturing of metallic components: materials, processes and mechanisms. Int Mater Rev. 2013;57:133–164.
  • Suryawanshi J , Prashanth KG , Scudino S , et al . Simultaneous enhancements of strength and toughness in an Al-12Si alloy synthesized using selective laser melting. Acta Mater. 2016;115:285–294.10.1016/j.actamat.2016.06.009
  • Cunningham R , Nicolas A , Madsen J , et al . Analyzing the effects of powder and post-processing on porosity and properties of electron beam melted Ti–6Al–4V. Mater Res Lett. 2017;5:516–525.10.1080/21663831.2017.1340911
  • Challis VJ , Xu X , Zhang LC , et al . High specific strength and stiffness structures produced using selective laser melting. Mater Des. 2014;63:783–788.10.1016/j.matdes.2014.05.064
  • Amin Yavari S , van der Stok J , Chai YC , et al . Bone regeneration performance of surface-treated porous titanium. Biomaterials. 2014;35:6172–6181.10.1016/j.biomaterials.2014.04.054
  • Tan C , Zhou K , Ma W , et al . Microstructural evolution, nanoprecipitation behavior and mechanical properties of selective laser melted high-performance grade 300 maraging steel. Mater Des. 2017;134:23–34.10.1016/j.matdes.2017.08.026
  • Leary M , Mazur M , Elambasseril J , et al . Selective laser melting (SLM) of AlSi12Mg lattice structures. Mater Des. 2016;98:344–357.10.1016/j.matdes.2016.02.127
  • Deprez K , Vandenberghe S , Van Audenhaege K , et al . Rapid additive manufacturing of MR compatible multipinhole collimators with selective laser melting of tungsten powder. Med Phys. 2013;40:012501.
  • Yap CY , Chua CK , Dong ZL , et al . Review of selective laser melting: materials and applications. Appl Phys Rev. 2015;2:041101.10.1063/1.4935926
  • Spierings AB , Herres N , Levy G . Influence of the particle size distribution on surface quality and mechanical properties in AM steel parts. Rapid Prototyp J. 2011;17:195–202.10.1108/13552541111124770
  • Li R , Liu J , Shi Y , et al . Balling behavior of stainless steel and nickel powder during selective laser melting process. Int J Adv Manuf Technol. 2012;59:1025–1035.10.1007/s00170-011-3566-1
  • Wang D , Yu C , Zhou X , et al . Dense pure tungsten fabricated by selective laser melting. Appl Sci. 2017;7:430.10.3390/app7040430
  • Qi H , Mazumder J , Ki H . Numerical simulation of heat transfer and fluid flow in coaxial laser cladding process for direct metal deposition. J Appl Phys. 2006;100:11.
  • Yadroitsev I , Krakhmalev P , Yadroitsava I , et al . Energy input effect on morphology and microstructure of selective laser melting single track from metallic powder. J Mater Process Technol. 2013;213:606–613.10.1016/j.jmatprotec.2012.11.014
  • Thompson SM , Bian L , Shamsaei N , et al . An overview of Direct Laser Deposition for additive manufacturing; Part I: transport phenomena, modeling and diagnostics. Addit Manuf. 2015;8:36–62.10.1016/j.addma.2015.07.001
  • Han L , Liou FW , Musti S . thermal behavior and geometry model of melt pool in laser material process. J Heat Trans. 2005;127:1005–1014.10.1115/1.2005275
  • Wang L , Felicelli S . Analysis of thermal phenomena in LENS™ deposition. Mater Sci Eng A. 2006;435–436:625–631.10.1016/j.msea.2006.07.087
  • He X , Mazumder J . Transport phenomena during direct metal deposition. J Appl Phys. 2007;101:053113.10.1063/1.2710780
  • Das S . Physical aspects of process control in selective laser sintering of metals. Adv Eng Mater. 2003;5:701–711.10.1002/(ISSN)1527-2648
  • Mercelis P , Kruth JP . Residual stresses in selective laser sintering and selective laser melting. Rapid Prototyp J. 2006;12:254–265.10.1108/13552540610707013
  • Tan C , Zhu H , Kuang T , et al . Laser cladding Al-based amorphous-nanocrystalline composite coatings on AZ80 magnesium alloy under water cooling condition. J Alloys Compd. 2017;690:108–115.10.1016/j.jallcom.2016.08.082
  • Gu D , Shen Y . Effects of processing parameters on consolidation and microstructure of W–Cu components by DMLS. J Alloys Compd. 2009;473:107–115.10.1016/j.jallcom.2008.05.065
  • Ng GKL , Jarfors AEW , Bi G , et al . Porosity formation and gas bubble retention in laser metal deposition. Appl Phys A. 2009;97:641.10.1007/s00339-009-5266-3
  • Gu D , Hagedorn Y-C , Meiners W , et al . Densification behavior, microstructure evolution, and wear performance of selective laser melting processed commercially pure titanium. Acta Mater. 2012;60:3849–3860.10.1016/j.actamat.2012.04.006
  • Zhang L-C , Attar H . Selective laser melting of titanium alloys and titanium matrix composites for biomedical applications. Rev Adv Eng Mater. 2016;18:463–475.
  • Sun Z , Tan X , Tor SB , et al . Selective laser melting of stainless steel 316L with low porosity and high build rates. Mater Des. 2016;104:197–204.10.1016/j.matdes.2016.05.035
  • Yihong K , Xipeng T , Shu Beng T , et al . Fabrication and microstructural characterisation of additive manufactured Ti–6Al–4V parts by electron beam melting. Virtual Phys Prototyp. 2015;10:13–21.
  • Vrancken B , Thijs L , Kruth JP , et al . Microstructure and mechanical properties of a novel β titanium metallic composite by selective laser melting. Acta Mater. 2014;68:150–158.10.1016/j.actamat.2014.01.018
  • Davies P , Pederson R , Coleman M , et al . The hierarchy of microstructure parameters affecting the tensile ductility in centrifugally cast and forged Ti-834 alloy during high temperature exposure in air. Acta Mater. 2016;117:51–67.10.1016/j.actamat.2016.07.015
  • Liu G-Y , Ni S , Song M . Effect of indentation size and grain/sub-grain size on microhardness of high purity tungsten. T Nonferr Metal Soc. 2015;25:3240–3246.10.1016/S1003-6326(15)63958-9
  • Gu D , Meiners W . Microstructure characteristics and formation mechanisms of in situ WC cemented carbide based hardmetals prepared by Selective Laser Melting. Mater Sci Eng A. 2010;527:7585–7592.10.1016/j.msea.2010.08.075
  • Yanwei L , Xiaodong Y , Chengwen T , et al . Effect of the β phase on compressive mechanical property of CVD tungsten. Rare Metal Mater Eng. 2011;40:1138–1140.10.1016/S1875-5372(11)60045-3
  • Huang H , Wu YQ , Wang SL , et al . Mechanical properties of single crystal tungsten microwhiskers characterized by nanoindentation. Mater Sci Eng A. 2009;523:193–198.10.1016/j.msea.2009.05.060
  • Zhou Q , Chen P . Fabrication and characterization of pure tungsten using the hot-shock consolidation. Int J Refract Metals Hard Mater. 2014;42:215–220.10.1016/j.ijrmhm.2013.09.008
  • Lennon AM , Ramesh KT . The thermoviscoplastic response of polycrystalline tungsten in compression. Mater Sci Eng A. 2000;276:9–21.10.1016/S0921-5093(99)00517-1
  • Wei Q , Jiao T , Ramesh KT , et al . Mechanical behavior and dynamic failure of high-strength ultrafine grained tungsten under uniaxial compression. Acta Mater. 2006;54:77–87.
  • Lee J-K , Kim S-Y , Ott RT , et al . Effect of reinforcement phase on the mechanical property of tungsten nanocomposite synthesized by spark plasma sintering. Int J Refract Metals Hard Mater. 2016;54:14–18.10.1016/j.ijrmhm.2015.07.009