2,198
Views
1
CrossRef citations to date
0
Altmetric
Focus on Intermetallic Catalysts

A new interpretation of the √7×√7 R19.1° structure for P adsorbed on a Ni(111) surface

, , , , &
Pages 379-387 | Received 06 Feb 2019, Accepted 19 Mar 2019, Published online: 30 Apr 2019

References

  • Van Hove MA, Hermann K, Watson PR. The NIST Surface Structure Database-SSD version 4. 2002;58:338–342.
  • Somorjai GA. Introduction to surface chemistry and catalysis. New York: Wiley Interscience; 1993.
  • Wang L-Q, Hussain Z, Huang Z, et al. Surface structure of√ 3×√ 3 R30° Cl/Ni (111) determined using low-temperature angle-resolved photoemission extended fine structure. Phys Rev B. 1991;44:13711.
  • Erley W, Wagner H. Chlorine adsorption on Ni(111). Surf Sci. 1977 August 01;66(1):371–375.
  • Takata Y, Sato H, Yagi S, et al. Site-selective adsorption of Cl atoms on Ni(111) studied by back-reflection X-ray standing-wave method. Surf Sci. 1992;265:111–117.
  • Funabashi M, Yokoyama T, Takata Y, et al. Surface Structure of Cl/Ni(111) determined by surface EXAFS spectroscopy and soft X-ray standingwave method. Surf Sci. 1990;242:59.
  • Wu Y, Mitchell K. A refined LEED structural determination for the surface designated Ni (111)–(2×2)–S. Can J Chem. 1989;67:1975–1979.
  • Warburton D, Wincott P, Thornton G, et al. Incorporation of sulphur into the (111) surface of nickel? Surf Sci. 1989;211:71–81.
  • Fauster T, Dürr H, Hartwig D. Determination of the geometry of sulphur on nickel surfaces by low-energy ion scattering. Surf Sci. 1986;178:657–666.
  • Andrews D, Woodruff D. The local adsorption site for sulphur on Ni {111} in the low coverage lattice gas. Surf Sci. 1984;141:31–39.
  • Capehart TW, Seabury C, Graham G, et al. Coverage dependent adsorption site for sulfur on Ni (111). Surf Sci Lett. 1982;120:L441–L446.
  • Marcus P, Demuth J, Jepsen D. Determination of the structure of ordered adsorbed layers by analysis of LEED spectra. Surf Sci. 1975;53:501–522.
  • Demuth J, Jepsen D, Marcus P. Crystallographic dependence of chemisorption bonding for sulfur on (001), (110), and (111) nickel. Phys Rev Lett. 1974;32:1182.
  • Gardin DE, Batteas JD, Van Hove MA, et al. Carbon, nitrogen, and sulfur on Ni(111): formation of complex structures and consequences for molecular decomposition. Surf Sci. 1993;296:25–35.
  • Yamada M, Hirashima H, Kitada A, et al. Three-Ni-atom cluster formed by sulfur adsorption on Ni (1 1 1). Surf Sci. 2008;602:1659–1668.
  • Zharnikov M, Weinelt M, Zebisch P, et al. Holography of clean and sulphur-covered Ni (111) using multiple wave number photoelectron diffraction patterns. Surf Sci. 1995;334:114–134.
  • Bäcker R, Hörz G. Scanning tunneling microscopy of carbon-and sulfur-induced modifications of Ni (111) and Ni (110) surfaces. Vacuum. 1995;46:1101–1104.
  • Maurice V, Kitakatsu N, Siegers M, et al. Low-coverage sulfur induced reconstruction of Ni (111). Surf Sci. 1997;373:307–317.
  • Mullins D, Huntley D, Overbury S. The nature of the sulfur induced surface reconstruction on Ni (111). Surf Sci. 1995;323:L287–L292.
  • Erley W, Wagner H. Sulfur poisoning of carbon monoxide adsorption on Ni (111). J Catal. 1978;53:287–294.
  • Delescluse P, Masson A. Diffuse scattering in RHEED induced by linear disorders of sulphur segregated on nickel (111) surface. Surf Sci. 1980;100:423–438.
  • Ku Y-S, Overbury SH. Structure analysis of S adsorbed on Ni(111) by low energy Li+ ion scattering. Surf Sci. 1992;276:262–272.
  • Ruan L, Stensgaard I, Besenbacher F, et al. Observation of a missing-row structure on an fcc (111) surface: the (5√ 3 × 2) S phase on Ni (111) studied by scanning tunneling microscopy. Phys Rev Lett. 1993;71:2963.
  • Kitajima Y, Yokoyama T, Ohta T, et al. Surface EXAFS and XANES studeis of 5 √3x2 S/Ni(111): a pseudo c(2x2) S/Ni(100) model with surface reconstruction. Surf Sci. 1989;214:L261.
  • Asakura K, Konishi S, Ohta T, et al. EXAFS studies on the adsorption strucutres of P/Ni(111). Jpn J Appl Phys. 1993;32-2:359–361.
  • Saidy M, Zhou MY, Mitchell KAR. Tensor LEED analysis for the Ni(111)–(√7 × √7)R19.1°–P surface structure: comparison with other √7 systems. Surf Interface Anal. 1999;28:84–91.
  • Rundqvist S. X-ray Investigations of Mn3P, Mn2P, and Ni2P. Acta Chem Scand. 1962;16:992–998.
  • Oyama ST. Novel catalysts for advanced hydroprocessing: transition metal phosphides. J Catal. 2003;216:343–352.
  • Robinson WRAM, Jnm VG, Korányi TI, et al. Phosphorus promotion of Ni(Co)-containing Mo-free catalysts in quinoline hydrodenitrogenation. J Catal. 1996;161:539–550.
  • Wang X, Clark P, Oyama ST. Synthesis, characterization, and hydrotreating activity of several iron group transition metal phosphides. J Catal. 2002;208:321–331.
  • Li K, Wang R, Chen J. Hydrodeoxygenation of anisole over silica-supported Ni2P, MoP, and NiMoP catalysts. Energy Fuels. 2011;25:854–863.
  • Voo G, de Souza PM, Cabioc‘H T, et al. Effect of P/Ni ratio on the performance of nickel phosphide phases supported on zirconia for the hydrodeoxygenation of m-cresol. Catal Commun. 2018. DOI:10.1016/j.catcom.2018.09.015.
  • Berenguer A, Sankaranarayanan TM, Gomez G, et al. Evaluation of transition metal phosphides supported on ordered mesoporous materials as catalysts for phenol hydrodeoxygenation. Green Chem. 2016;18:1938–1951.
  • Gonçalves VOO, de Souza PM, Da Silva VT, et al. Kinetics of the hydrodeoxygenation of cresol isomers over Ni2P/SiO2: proposals of nature of deoxygenation active sites based on an experimental study. Appl Catal B Environ. 2017;205:357–367.
  • Shi Y, Zhang B. Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction. Chem Soc Rev. 2016;45:1529–1541.
  • Popczun EJ, McKone JR, Read CG, et al. Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction. J Am Chem Soc. 2013;135:9267–9270.
  • Kawai T, Bando KK, Lee YK, et al. EXAFS measurements of a working catalyst in the liquid phase: an in situ study of a Ni2P hydrodesulfurization catalyst. J Catal. 2006;241:20–24.
  • Bando KK, Wada T, Miyamoto T, et al. Combined in situ QXAFS and FTIR analysis of a Ni phosphide catalyst under hydrodesulfurization conditions. J Catal. 2012;286:165–171.
  • Wada T, Bando KK, Miyamoto T, et al. Operando QEXAFS studies of Ni2P during thiophene hydrodesulfurization: direct observation of Ni-S bond formation under reaction conditions. J Synchrotron Radiat. 2012;19:205–209.
  • Wada T, Bando KK, Oyama ST, et al. Operando observation of Ni2P structural changes during catalytic reaction: effect of H2S pretreatment. Chem Lett. 2012;41:1238–1240.
  • Edamoto K, Inomata H, Shimada T, et al. Valence and core-level photoelectron spectroscopy study of the electronic structure of Ni2P(0001). e-J Surf Sci Nanotechnol. 2009;7:1.
  • Edamoto K, Nakadai Y, Inomata H, et al. Soft XPS study of Ni2P(0001). Solid State Commun. 2008;148:135.
  • Ariga H, Kawashima M, Takakusagi S, et al. Density function theoretical investigation on the Ni3PP structure and its hydrogen adsorption property of Ni2P(0001) surface. Chem Lett. 2013;42:1481–1483.
  • Moula MG, Suzuki S, Chun WJ, et al. The first atomic-scale observation of a Ni2P(0001) single crystal surface. Chem Lett. 35:90–91. doi: 10.1246/cl.2006.90
  • Liu P, Rodriguez JA, Asakura T, et al. Deslufrization reactions on Ni2P(0001) and α-Mo2C(001) surfaces: complexrole of P and C sites. J Phys Chem B. 2005;109:4575.
  • Hernandez AB, Ariga H, Takakusagi S, et al. Dynamical LEED analysis of Ni2P (0001)-1 × 1: evidence for P-covered surface structure. Chem Phys Lett. 2011;513:48–52.
  • Guo D, Nakagawa Y, Ariga H, et al. STM studies on the reconstruction of the Ni2P(101b0) surface. Surf Sci. 2010;604:1347–1352.
  • Edamoto K, Inomata H, Ozawa K, et al. Electronic structure of the Ni2P(101b0) surface: angle-resolved photoemission study. Solid State Commun. 2010;150:1120–1123.
  • Imanishi S, Munakata S, Kakefuda Y, et al. Characterization of Ni2P(10-10): soft X-ray photoelectron spectroscopy study. e-J Surf Sci Nanotechnol. 2012;10:45–49.
  • Edamoto K, Inomata H, Yasuno N, et al. Angle resolved and resonant photelectron spectroscopy study of Ni2P(101b0) single crystal surface. Hyomen Kagaku. 2010;31:324.
  • Suzuki S, Moula GM, Miyamoto T, et al. Scanning tunneling microscopy and photoemission electron microscopy studies on single crystal Ni2P surfaces. J Nanosci Nanotechnol. 2009;9:195–201.
  • Kinoshita K, Simon GH, Konig T, et al. A scanning tunneling microscopy cbservation of (√3 x√3) R30 reconstruction Ni2P (0001). Jpn J Appl Phys. 2008;47:6088–6091.
  • Yuan Q, Ariga H, Asakura K. An investigation of Ni2P single crystal surfaces: structure, electronic state and reactivity. Topics Catal. 2015;58:194–200.
  • Contreras-Mora J, Ariga-Miwa H, Takakusagi S, et al. Phosphorous diffusion through Ni2P—low energy diffusion path and its unique local structure. J Phys Chem C. 2018;122:6318–6322.
  • Song JD, Kim JM, Lee YT. Molecular beam epitaxial growth of high-quality InP/InGaAs/InP heterostructure with polycrystalline GaAs and GaP decomposition sources. Jpn J Appl Phys. 2000;39:L347.
  • Goh KEJ, Oberbeck L, Butcher M, et al. Comparison of GaP and PH3 as dopant sources for STM-based device fabrication. Nanotechnology. 2007;18:065301.
  • Mondry M, Caine E, Kroemer H. A GaP decomposition source for producing a dimer phosphorus molecular beam free of gallium and tetramer phosphorus. J Vac Sci Technol A. 1985;3:316–318.
  • Kiskinova M, Goodman DW. Modification of chemisorption properties by electronegative adatoms: H2 and CO on chlorided, sulfided, and phosphided Ni(100). Surf Sci. 1981;108:64–76.
  • Herman KE, Van Hove MA. LEEDpat, version 4.2. 2014. http://www.fhi-berlin.mpg.de/KHsoftware/LEEDpat/
  • Ertl G, Küppers J. Low energy electrons and surface chemistry. Weinheim, Federal Republic of Germany; Deerfield Beach, FL, USA: VCH; 1985.
  • Saidy M, Mitchell KAR. Tensor LEED analysis for the Cu(111)-(7×7)R19.1°-S surface structure. Surf Sci. 1999;441:425–435.
  • Yoshinori K, Yasutaka T, Hitoshi S, et al. Surface structure of (√7×√7) R19.1°S/Cu(111) studied by surface EXAFS and back-reflection X-ray standing-wave method. Jpn J Appl Phys. 1993;32(S2):377.
  • Liu W, Wong KC, Mitchell KAR. LEED crystallographic analysis for the Rh(111)-(√7 ×√7)R19.1°P surface structure. Surf Sci. 1997;372:312–322.
  • Liu W, Wong KC, Mitchell KAR. Novel surface structure: Rh(111)-(√7 × √7)R19.1°P. J Am Chem Soc. 1995;117:12344–12345.
  • Shard AG, Dhanak VR, Muryn CA. SEXAFS and NIXSW investigation of the Rh(111)-(7×7)R19.1°-P surface. Surf Sci. 1999;433–435:267–271.
  • Forbes JG, Gellman AJ, Dunphy JC, et al. Imaging of sulfur overlayer structures on the Pd(111) surface. Surf Sci. 1992;279:68–78.
  • Grillo ME, Stampfl C, Berndt W. Low-energy electron-diffraction analysis of the (√7 × √7)R19.1°-S adsorbate structure on the Pd(111) surface. Surf Sci. 1994;317:84–98.