7,600
Views
84
CrossRef citations to date
0
Altmetric
Focus on Nanogenerators

Modulation of surface physics and chemistry in triboelectric energy harvesting technologies

, , , , &
Pages 758-773 | Received 30 Mar 2019, Accepted 11 Jun 2019, Published online: 10 Jul 2019

References

  • Dagdeviren C, Shi Y, Joe P, et al. Conformal piezoelectric systems for clinical and experimental characterization of soft tissue biomechanics. Nat Mater. 2015;14:728–736.
  • Wang ZL. Self-powered nanosensors and nanosystems. Adv Mater. 2012;24:280–285.
  • Fan F-R, Lin L, Zhu G, et al. Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films. Nano Lett. 2012;12:3109–3114.
  • Hwang G-T, Annapureddy V, Han JH, et al. Self-powered wireless sensor node enabled by an aerosol-deposited PZT flexible energy harvester. Adv Energy Mater. 2016;6:1600237.
  • Kuo AD. BIOPHYSICS: harvesting energy by improving the economy of human walking. Science. 2005;309:1686–1687.
  • Xu S, Qin Y, Xu C, et al. Self-powered nanowire devices. Nat Nanotechnol. 2010;5:366–373.
  • Wang S, Lin L, Wang ZL. Nanoscale triboelectric-effect-enabled energy conversion for sustainably powering portable electronics. Nano Lett. 2012;12:6339–6346.
  • Wang ZL, Wu W. Nanotechnology-enabled energy harvesting for self-powered micro-/nanosystems. Angew Chemie Int Ed. 2012;51:11700–11721.
  • Lee KY, Gupta MK, Kim S-W. Transparent flexible stretchable piezoelectric and triboelectric nanogenerators for powering portable electronics. Nano Energy. 2015;14:139–160.
  • Lee SH, Jeong CK, Hwang G-T, et al. Self-powered flexible inorganic electronic system. Nano Energy. 2015;14:111–125.
  • Dagdeviren C, Joe P, Tuzman OL, et al. Recent progress in flexible and stretchable piezoelectric devices for mechanical energy harvesting, sensing and actuation. Extrem Mech Lett. 2016;9:269–281.
  • Fan FR, Tang W, Wang ZL. Flexible nanogenerators for energy harvesting and self-powered electronics. Adv Mater. 2016;28:4283–4305.
  • Hwang G-T, Yang J, Yang SH, et al. A reconfigurable rectified flexible energy harvester via solid-state single crystal grown PMN-PZT. Adv Energy Mater. 2015;5:1500051.
  • Kim DH, Shin HJ, Lee H, et al. In vivo self-powered wireless transmission using biocompatible flexible energy harvesters. Adv Funct Mater. 2017;27:1700341.
  • Fan F-R, Tian Z-Q, Lin Wang Z. Flexible triboelectric generator. Nano Energy. 2012;1:328–334.
  • Chen SW, Cao X, Wang N, et al. An ultrathin flexible single-electrode triboelectric-nanogenerator for mechanical energy harvesting and instantaneous force sensing. Adv Energy Mater. 2017;7:1601255.
  • Jung W-S, Lee M-J, Kang M-G, et al. Powerful curved piezoelectric generator for wearable applications. Nano Energy. 2015;13:174–181.
  • Dagdeviren C, Yang BD, Su Y, et al. Conformal piezoelectric energy harvesting and storage from motions of the heart, lung, and diaphragm. Proc Natl Acad Sci. 2014;111:1927–1932.
  • Zhang Z, Yao C, Yu Y, et al. Mesoporous piezoelectric polymer composite films with tunable mechanical modulus for harvesting energy from liquid pressure fluctuation. Adv Funct Mater. 2016;26:6760–6765.
  • Won SS, Seo H, Kawahara M, et al. Flexible vibrational energy harvesting devices using strain-engineered perovskite piezoelectric thin films. Nano Energy. 2019;55:182–192.
  • Park JH, Lee HE, Jeong CK, et al. Self-powered flexible electronics beyond thermal limits. Nano Energy. 2019;56:531–546.
  • Kim S-D, Hwang G-T, Song K, et al. Inverse size-dependence of piezoelectricity in single BaTiO3 nanoparticles. Nano Energy. 2019;58:78–84.
  • Park K-I, Xu S, Liu Y, et al. Piezoelectric BaTiO3 thin film nanogenerator on plastic substrates. Nano Lett. 2010;10:4939–4943.
  • Park K-I, Lee M, Liu Y, et al. Flexible nanocomposite generator made of BaTiO3 nanoparticles and graphitic carbons. Adv Mater. 2012;24:2999–3004.
  • Jeong CK, Kim I, Park K-I, et al. Virus-directed design of a flexible BaTiO3 nanogenerator. ACS Nano. 2013;7:11016–11025.
  • Park K-I, Jeong CK, Ryu J, et al. Flexible and large-area nanocomposite generators based on lead zirconate titanate particles and carbon nanotubes. Adv Energy Mater. 2013;3:1539–1544.
  • Jeong CK, Park K-I, Ryu J, et al. Large-area and flexible lead-free nanocomposite generator using alkaline niobate particles and metal nanorod filler. Adv Funct Mater. 2014;24:2620–2629.
  • Jeong CK, Lee J, Han S, et al. A hyper-stretchable elastic-composite energy harvester. Adv Mater. 2015;27:2866–2875.
  • Park K-I, Jeong CK, Kim NK, et al. Stretchable piezoelectric nanocomposite generator. Nano Converg. 2016;3:12.
  • Jeong CK, Han JH, Palneedi H, et al. Comprehensive biocompatibility of nontoxic and high-output flexible energy harvester using lead-free piezoceramic thin film. APL Mater. 2017;5:074102.
  • Zhang Y, Sun H, Jeong CK. Biomimetic porifera skeletal structure of lead-free piezocomposite energy harvesters. ACS Appl Mater Interfaces. 2018;10:35539–35546.
  • Zhang Y, Jeong CK, Wang J, et al. Flexible energy harvesting polymer composites based on biofibril-templated 3-dimensional interconnected piezoceramics. Nano Energy. 2018;50:35–42.
  • Wang X. Piezoelectric nanogenerators—harvesting ambient mechanical energy at the nanometer scale. Nano Energy. 2012;1:13–24.
  • Seo M-H, Yoo J-Y, Choi S-Y, et al. Versatile transfer of an ultralong and seamless nanowire array crystallized at high temperature for use in high-performance flexible devices. ACS Nano. 2017;11:1520–1529.
  • Zhang Y, Jeong CK, Yang T, et al. Bioinspired elastic piezoelectric composites for high-performance mechanical energy harvesting. J Mater Chem A. 2018;6:14546–14552.
  • Chae I, Jeong CK, Ounaies Z, et al. Review on electromechanical coupling properties of biomaterials. ACS Appl Bio Mater. 2018;1:936–953.
  • Seo J, Kim Y, Park WY, et al. Out-of-plane piezoresponse of monolayer MoS2 on plastic substrates enabled by highly uniform and layer-controllable CVD. Appl Surf Sci. 2019;487:1356–1361.
  • Park K-I, Son JH, Hwang G-T, et al. Highly-efficient, flexible piezoelectric PZT thin film nanogenerator on plastic substrates. Adv Mater. 2014;26:2514–2520.
  • Jeong CK, Cho SB, Han JH, et al. Flexible highly-effective energy harvester via crystallographic and computational control of nanointerfacial morphotropic piezoelectric thin film. Nano Res. 2017;10:437–455.
  • Khan MB, Kim DH, Han JH, et al. Performance improvement of flexible piezoelectric energy harvester for irregular human motion with energy extraction enhancement circuit. Nano Energy. 2019;58:211–219.
  • Sun C, Shi J, Bayerl DJ, et al. PVDF microbelts for harvesting energy from respiration. Energy Environ Sci. 2011;4:4508.
  • Mao Y, Zhao P, McConohy G, et al. Sponge-like piezoelectric polymer films for scalable and integratable nanogenerators and self-powered electronic systems. Adv Energy Mater. 2014;4:1301624.
  • Jeong CK, Baek C, Kingon AI, et al. Lead-free perovskite nanowire-employed piezopolymer for highly efficient flexible nanocomposite energy harvester. Small. 2018;14:1704022.
  • Zhang Y, Zhu W, Jeong CK, et al. A microcube-based hybrid piezocomposite as a flexible energy generator. RSC Adv. 2017;7:32502–32507.
  • Hwang G-T, Park H, Lee J-H, et al. Self-powered cardiac pacemaker enabled by flexible single crystalline PMN-PT piezoelectric energy harvester. Adv Mater. 2014;26:4880–4887.
  • Hwang G-T, Kim Y, Lee J-H, et al. Self-powered deep brain stimulation via a flexible PIMNT energy harvester. Energy Environ Sci. 2015;8:2677–2684.
  • Lee HS, Chung J, Hwang G-T, et al. Flexible inorganic piezoelectric acoustic nanosensors for biomimetic artificial hair cells. Adv Funct Mater. 2014;24:6914–6921.
  • Hwang G-T, Byun M, Jeong CK, et al. Flexible piezoelectric thin-film energy harvesters and nanosensors for biomedical applications. Adv Healthc Mater. 2015;4:646–658.
  • Park DY, Joe DJ, Kim DH, et al. Self-powered real-time arterial pulse monitoring using ultrathin epidermal piezoelectric sensors. Adv Mater. 2017;29:1702308.
  • Han JH, Bae KM, Hong SK, et al. Machine learning-based self-powered acoustic sensor for speaker recognition. Nano Energy. 2018;53:658–665.
  • Han JH, Kwak J-H, Joe DJ, et al. Basilar membrane-inspired self-powered acoustic sensor enabled by highly sensitive multi tunable frequency band. Nano Energy. 2018;53:198–205.
  • Moorthy B, Baek C, Wang JE, et al. Piezoelectric energy harvesting from a PMN–PT single nanowire. RSC Adv. 2017;7:260–265.
  • Zhu G, Pan C, Guo W, et al. Triboelectric-generator-driven pulse electrodeposition for micropatterning. Nano Lett. 2012;12:4960–4965.
  • Mizes HA, Conwell EM, Salamida DP. Direct observation of ion transfer in contact charging between a metal and a polymer. Appl Phys Lett. 1990;56:1597–1599.
  • Liu C, Bard AJ. Electrons on dielectrics and contact electrification. Chem Phys Lett. 2009;480:145–156.
  • Lowell J. Surface states and the contact electrification of polymers. J Phys D Appl Phys. 1977;10:65–71.
  • Baytekin HT, Patashinski AZ, Branicki M, et al. The mosaic of surface charge in contact electrification. Science. 2011;333:308–312.
  • Xu C, Zi Y, Wang AC, et al. On the electron-transfer mechanism in the contact-electrification effect. Adv Mater. 2018;30:1706790.
  • Niu S, Liu Y, Wang S, et al. Theoretical investigation and structural optimization of single-electrode triboelectric nanogenerators. Adv Funct Mater. 2014;24:3332–3340.
  • Niu S, Wang S, Lin L, et al. Theoretical study of contact-mode triboelectric nanogenerators as an effective power source. Energy Environ Sci. 2013;6:3576.
  • Niu S, Liu Y, Wang S, et al. Theory of sliding-mode triboelectric nanogenerators. Adv Mater. 2013;25:6184–6193.
  • Dharmasena RDIG, Deane JHB, Silva SRP. Nature of power generation and output optimization criteria for triboelectric nanogenerators. Adv Energy Mater. 2018;8:1802190.
  • Zhao XJ, Zhu G, Wang ZL. Coplanar induction enabled by asymmetric permittivity of dielectric materials for mechanical energy conversion. ACS Appl Mater Interfaces. 2015;7:6025–6029.
  • Kim YJ, Lee J, Park S, et al. Effect of the relative permittivity of oxides on the performance of triboelectric nanogenerators. RSC Adv. 2017;7:49368–49373.
  • Chen J, Guo H, He X, et al. Enhancing performance of triboelectric nanogenerator by filling high dielectric nanoparticles into sponge PDMS film. ACS Appl Mater Interfaces. 2016;8:736–744.
  • Lee B-Y, Kim S-U, Kang S, et al. Transparent and flexible high power triboelectric nanogenerator with metallic nanowire-embedded tribonegative conducting polymer. Nano Energy. 2018;53:152–159.
  • Żenkiewicz M, Żuk T, Markiewicz E. Triboelectric series and electrostatic separation of some biopolymers. Polym Test. 2015;42:192–198.
  • Bai P, Zhu G, Liu Y, et al. Cylindrical rotating triboelectric nanogenerator. ACS Nano. 2013;7:6361–6366.
  • Zhu G, Chen J, Zhang T, et al. Radial-arrayed rotary electrification for high performance triboelectric generator. Nat Commun. 2014;5:3426.
  • Lin L, Wang S, Xie Y, et al. Segmentally structured disk triboelectric nanogenerator for harvesting rotational mechanical energy. Nano Lett. 2013;13:2916–2923.
  • Yang Y, Zhang H, Chen J, et al. Single-electrode-based sliding triboelectric nanogenerator for self-powered displacement vector sensor system. ACS Nano. 2013;7:7342–7351.
  • Wang S, Lin L, Xie Y, et al. Sliding-triboelectric nanogenerators based on in-plane charge-separation mechanism. Nano Lett. 2013;13:2226–2233.
  • Zhang H, Yang Y, Su Y, et al. Triboelectric nanogenerator for harvesting vibration energy in full space and as self-powered acceleration sensor. Adv Funct Mater. 2014;24:1401–1407.
  • Niu S, Wang S, Liu Y, et al. A theoretical study of grating structured triboelectric nanogenerators. Energy Environ Sci. 2014;7:2339–2349.
  • Zhu G, Lin Z-H, Jing Q, et al. Toward large-scale energy harvesting by a nanoparticle-enhanced triboelectric nanogenerator. Nano Lett. 2013;13:847–853.
  • Jing Q, Kar-Narayan S. Nanostructured polymer-based piezoelectric and triboelectric materials and devices for energy harvesting applications. J Phys D Appl Phys. 2018;51:303001.
  • Jeong CK, Baek KM, Niu S, et al. Topographically-designed triboelectric nanogenerator via block copolymer self-assembly. Nano Lett. 2014;14:7031–7038.
  • Kim D, Jeon S-B, Kim JY, et al. High-performance nanopattern triboelectric generator by block copolymer lithography. Nano Energy. 2015;12:331–338.
  • Wang HS, Jeong CK, Seo M-H, et al. Performance-enhanced triboelectric nanogenerator enabled by wafer-scale nanogrates of multistep pattern downscaling. Nano Energy. 2017;35:415–423.
  • Feng Y, Zheng Y, Ma S, et al. High output polypropylene nanowire array triboelectric nanogenerator through surface structural control and chemical modification. Nano Energy. 2016;19:48–57.
  • Wang S, Xie Y, Niu S, et al. Maximum surface charge density for triboelectric nanogenerators achieved by ionized-air injection: methodology and theoretical understanding. Adv Mater. 2014;26:6720–6728.
  • Wang S, Zi Y, Zhou YS, et al. Molecular surface functionalization to enhance the power output of triboelectric nanogenerators. J Mater Chem A. 2016;4:3728–3734.
  • Lin Z-H, Xie Y, Yang Y, et al. Enhanced triboelectric nanogenerators and triboelectric nanosensor using chemically modified TiO2 nanomaterials. ACS Nano. 2013;7:4554–4560.
  • Lin W-C, Lee S-H, Karakachian M, et al. Tuning the surface potential of gold substrates arbitrarily with self-assembled monolayers with mixed functional groups. Phys Chem Chem Phys. 2009;11:6199.
  • Zhou YS, Liu Y, Zhu G, et al. In situ quantitative study of nanoscale triboelectrification and patterning. Nano Lett. 2013;13:2771–2776.
  • Byun K-E, Cho Y, Seol M, et al. Control of triboelectrification by engineering surface dipole and surface electronic state. ACS Appl Mater Interfaces. 2016;8:18519–18525.
  • Sano C, Mitsuya H, Ono S, et al. Triboelectric energy harvesting with surface-charge-fixed polymer based on ionic liquid. Sci Technol Adv Mater. 2018;19:317–323.
  • Yang W, Chen J, Zhu G, et al. Harvesting energy from the natural vibration of human walking. ACS Nano. 2013;7:11317–11324.
  • Lee S, Lee Y, Kim D, et al. Triboelectric nanogenerator for harvesting pendulum oscillation energy. Nano Energy. 2013;2:1113–1120.
  • Zhong J, Zhong Q, Fan F, et al. Finger typing driven triboelectric nanogenerator and its use for instantaneously lighting up LEDs. Nano Energy. 2013;2:491–497.
  • Kim D, Tcho I-W, Jin IK, et al. Direct-laser-patterned friction layer for the output enhancement of a triboelectric nanogenerator. Nano Energy. 2017;35:379–386.
  • Kim SJ, Lee HE, Choi H, et al. High-performance flexible thermoelectric power generator using laser multiscanning lift-off process. ACS Nano. 2016;10:10851–10857.
  • Park WI, You BK, Mun BH, et al. Self-assembled incorporation of modulated block copolymer nanostructures in phase-change memory for switching power reduction. ACS Nano. 2013;7:2651–2658.
  • Jin HM, Lee SH, Kim JY, et al. Laser writing block copolymer self-assembly on graphene light-absorbing layer. ACS Nano. 2016;10:3435–3442.
  • Choi H-J, Lee JH, Jun J, et al. High-performance triboelectric nanogenerators with artificially well-tailored interlocked interfaces. Nano Energy. 2016;27:595–601.
  • Pourrahimi AM, Olsson RT, Hedenqvist MS. The role of interfaces in polyethylene/metal-oxide nanocomposites for ultrahigh-voltage insulating materials. Adv Mater. 2018;30:1703624.
  • Wei XY, Zhu G, Wang ZL. Surface-charge engineering for high-performance triboelectric nanogenerator based on identical electrification materials. Nano Energy. 2014;10:83–89.
  • Wang Z, Cheng L, Zheng Y, et al. Enhancing the performance of triboelectric nanogenerator through prior-charge injection and its application on self-powered anticorrosion. Nano Energy. 2014;10:37–43.
  • Choi YS, Jing Q, Datta A, et al. A triboelectric generator based on self-poled Nylon-11 nanowires fabricated by gas-flow assisted template wetting. Energy Environ Sci. 2017;10:2180–2189.
  • Yun BK, Kim JW, Kim HS, et al. Base-treated polydimethylsiloxane surfaces as enhanced triboelectric nanogenerators. Nano Energy. 2015;15:523–529.
  • Hoek I, Tho F, Arnold WM. Sodium hydroxide treatment of PDMS based microfluidic devices. Lab Chip. 2010;10:2283.
  • Yao C, Yin X, Yu Y, et al. Chemically functionalized natural cellulose materials for effective triboelectric nanogenerator development. Adv Funct Mater. 2017;27:1700794.
  • Shang W, Gu GQ, Yang F, et al. A sliding-mode triboelectric nanogenerator with chemical group grated structure by shadow mask reactive ion Etching. ACS Nano. 2017;11:8796–8803.
  • Shin S-H, Bae YE, Moon HK, et al. Formation of triboelectric series via atomic-level surface functionalization for triboelectric energy harvesting. ACS Nano. 2017;11:6131–6138.
  • Busolo T, Ura DP, Kim SK, et al. Surface potential tailoring of PMMA fibers by electrospinning for enhanced triboelectric performance. Nano Energy. 2019;57:500–506.
  • Liu L, Tang W, Wang ZL. Inductively-coupled-plasma-induced electret enhancement for triboelectric nanogenerators. Nanotechnology. 2017;28:035405.
  • Lai M, Du B, Guo H, et al. Enhancing the output charge density of TENG via building longitudinal paths of electrostatic charges in the contacting layers. ACS Appl Mater Interfaces. 2018;10:2158–2165.
  • Huang T, Lu M, Yu H, et al. Enhanced power output of a triboelectric nanogenerator composed of electrospun nanofiber mats doped with graphene oxide. Sci Rep. 2015;5:13942.
  • Wu C, Kim TW, Choi HY. Reduced graphene-oxide acting as electron-trapping sites in the friction layer for giant triboelectric enhancement. Nano Energy. 2017;32:542–550.
  • Uddin ASMI, Yaqoob U, Chung G-S. Improving the working efficiency of a triboelectric nanogenerator by the semimetallic PEDOT:PSS hole transport layer and its application in self-powered active acetylene gas sensing. ACS Appl Mater Interfaces. 2016;8:30079–30089.
  • Bai P, Zhu G, Zhou YS, et al. Dipole-moment-induced effect on contact electrification for triboelectric nanogenerators. Nano Res. 2014;7:990–997.
  • Kang H, Kim H, Kim S, et al. Mechanically robust silver nanowires network for triboelectric nanogenerators. Adv Funct Mater. 2016;26:7717–7724.
  • Kwon YH, Shin S-H, Kim Y-H, et al. Triboelectric contact surface charge modulation and piezoelectric charge inducement using polarized composite thin film for performance enhancement of triboelectric generators. Nano Energy. 2016;25:225–231.
  • Lee KY, Kim SK, Lee J-H, et al. Controllable charge transfer by ferroelectric polarization mediated triboelectricity. Adv Funct Mater. 2016;26:3067–3073.
  • Yang X, Daoud WA. Triboelectric and piezoelectric effects in a combined tribo-piezoelectric nanogenerator based on an interfacial ZnO nanostructure. Adv Funct Mater. 2016;26:8194–8201.
  • Peng J, Kang SD, Snyder GJ. Optimization principles and the figure of merit for triboelectric generators. Sci Adv. 2017;3:eaap8576.
  • Liu D, Hoang AT, Pourrahimi AM, et al. Influence of nanoparticle surface coating on electrical conductivity of LDPE/Al2O3 nanocomposites for HVDC cable insulations. IEEE Trans Dielectr Electr Insul. 2017;24:1396–1404.
  • Chun J, Kim JW, Jung W, et al. Mesoporous pores impregnated with Au nanoparticles as effective dielectrics for enhancing triboelectric nanogenerator performance in harsh environments. Energy Environ Sci. 2015;8:3006–3012.
  • Lee JW, Cho HJ, Chun J, et al. Robust nanogenerators based on graft copolymers via control of dielectrics for remarkable output power enhancement. Sci Adv. 2017;3:e1602902.
  • Seung W, Yoon H-J, Kim TY, et al. Boosting power-generating performance of triboelectric nanogenerators via artificial control of ferroelectric polarization and dielectric properties. Adv Energy Mater. 2017;7:1600988.
  • Kim J, Lee JH, Ryu H, et al. High-performance piezoelectric, pyroelectric, and triboelectric nanogenerators based on P(VDF-TrFE) with controlled crystallinity and dipole alignment. Adv Funct Mater. 2017;27:1700702.
  • Šutka A, Mālnieks K, Linarts A, et al. Inversely polarised ferroelectric polymer contact electrodes for triboelectric-like generators from identical materials. Energy Environ Sci. 2018;11:1437–1443.
  • Kim S, Gupta MK, Lee KY, et al. Transparent flexible graphene triboelectric nanogenerators. Adv Mater. 2014;26:3918–3925.
  • Dong Y, Mallineni SSK, Maleski K, et al. Metallic MXenes: A new family of materials for flexible triboelectric nanogenerators. Nano Energy. 2018;44:103–110.
  • Wu C, Kim TW, Park JH, et al. enhanced triboelectric nanogenerators based on MoS2 monolayer nanocomposites acting as electron-acceptor layers. ACS Nano. 2017;11:8356–8363.
  • Seol M, Kim S, Cho Y, et al. Triboelectric series of 2D layered materials. Adv Mater. 2018;30:1801210.
  • Li S, Wang S, Zi Y, et al. Largely improving the robustness and lifetime of triboelectric nanogenerators through automatic transition between contact and noncontact working states. ACS Nano. 2015;9:7479–7487.