3,267
Views
14
CrossRef citations to date
0
Altmetric
Energy Materials

Thermodynamic criteria of the end-of-life silicon wafers refining for closing the recycling loop of photovoltaic panels

, , , &
Pages 813-825 | Received 06 May 2019, Accepted 05 Jul 2019, Published online: 29 Jul 2019

References

  • Chu S, Majumdar A. Opportunities and challenges for a sustainable energy future. Nature. 2012;488:294–303.
  • Aman MM, Solangi KH, Hossain MS, et al. A review of Safety, Health and Environmental (SHE) issues of solar energy system. Renew Sustain Energy Rev. 2015;41:1190–1204.
  • Solar Power Europe. Global market outlook for solar power. Brussels, Belgium; 2018. p. 2018–2022.
  • International Renewable Energy Agency (IRENA) & International Energy Agency Photovoltaic Power Systems (IEA-PVPS). End-of-Life management solar photovoltaic panels. 2016.
  • Xu Y, Li J, Tan Q, et al. Global status of recycling waste solar panels: A review. Waste Manag. 2018;75:450–458.
  • European Parliament and Council. Directive 2012/19/EU of the European Parliament and of the Council of 4 July 2012 on waste electrical and electronic equipment (WEEE); 2012. EU, Brussels.
  • Jun-ki C, Vasilis F. Design and optimization of photovoltaics recycling infrastructure. Environ Sci Technol. 2010;44:8678–8683.
  • Tao J, Yu S. Review on feasible recycling pathways and technologies of solar photovoltaic modules. Sol Energy MaterSol Cells. 2015;141:108–124.
  • Elshkaki A, Graedel TE. Dynamic analysis of the global metals flows and stocks in electricity generation technologies. Clean Prod. 2013;59:260–273.
  • Kang S, Yoo S, Lee J, et al. Experimental investigations for recycling of silicon and glass from waste photovoltaic modules. Renewable Energy. 2012;47:152–159.
  • Larsen K. End-of-life PV: then what? Renew Energy Focus. 2009;10:48–53.
  • Latunussa CEL, Ardente F, Blengini GA, et al. Life cycle assessment of an innovative recycling process for crystalline silicon photovoltaic panels. Sol Energy Mater Sol Cells. 2016;156:101–111.
  • Reck BK, Graedel TE. Challenges in metal recycling. Science. 2012;337:690–695.
  • Pizzini S. Bulk solar grade silicon: how chemistry and physics play to get a benevolent microstructured material. Appl Phys A. 2009;96:171–188.
  • Delannoy Y. Purification of silicon for photovoltaic applications. J Cryst Growth. 2012;360:61–67.
  • Chigondo F. From metallurgical-grade to solar-grade silicon: an overview. Silicon. 2018;10:789–798.
  • Klaus J, Olindo I, Arno HMS, et al. Basic semiconductor physics solar energy: fundamentals, technology, and systems. Delft, the Netherlands: Delft University of Technology; 2014. p. 49–66.
  • Mostafa A, Medraj M. Binary phase diagrams and thermodynamic properties of silicon and essential doping elements (Al, As, B, Bi, Ga, In, N, P, Sb and Tl). Materials. 2017;10:676.
  • Takiguchi H, Morita K. Model development of assessing 3Rs for photovoltaic cells. Environ Sci. 2010;23:81–95.
  • Klugmann-Radziemska E, Ostrowski P, Drabczyk K, et al. Experimental validation of crystalline silicon solar cells recycling by thermal and chemical methods. Sol Energy Mater Sol Cells. 2010;94:2275–2282.
  • Klugmann-Radziemska E, Ostrowski P. Chemical treatment of crystalline silicon solar cells as a method of recovering pure silicon from photovoltaic modules. Renewable Energy. 2010;35:1751–1759.
  • Safarian J, Tranell G, Tangstad M. Processes for upgrading metallurgical grade silicon to solar grade silicon. Energy Procedia. 2012;20:88–97.
  • Morita K, Miki T. Thermodynamics of solar-grade-silicon refining. Intermetallics. 2003;11:1111–1117.
  • Johnston MD, Khajavi LT, Li M, et al. High-temperature refining of metallurgical-grade silicon: a review. JOM. 2012;64:935–945.
  • Mukashev BN, Abdullin KA, Tamendarov MF, et al. A metallurgical route to produce upgraded silicon and monosilane. Sol Energy Mater Sol Cells. 2009;93:1785–1791.
  • Nakajima K, Takeda O, Miki T, et al. Evaluation method of metal resource recyclability based on thermodynamic analysis. Mater Trans. 2009;50:453–460.
  • Nakajima K, Takeda O, Miki T, et al. Thermodynamic analysis of contamination by alloying elements in aluminum recycling. Environ Sci Technol. 2010;44:5594–5600.
  • Nakajima K, Takeda O, Miki T, et al. Thermodynamic analysis for the controllability of elements in the recycling process of metals. Environ Sci Technol. 2011;45:4929–4936.
  • Hiraki T, Takeda O, Nakajima K, et al. Thermodynamic criteria for the removal of impurities from end-of-life magnesium alloys by evaporation and flux treatment. Sci Technol Adv Mater. 2011;12:035003.
  • Lu X, Hiraki T, Nakajima K, et al. Thermodynamic analysis of separation of alloying elements in recycling of end-of-life titanium products. Sep Purif Technol. 2012;89:135–141.
  • Hiraki T, Miki T, Nakajima K, et al. Thermodynamic analysis for the refining ability of salt flux for aluminum recycling. Materials. 2014;7:5543–5553.
  • Lu X, Matsubae K, Nakajima K, et al. Thermodynamic considerations of contamination by alloying elements of remelted end-of-life nickel- and cobalt-based superalloys. Metall Mater Trans B. 2016;47:1785–1795.
  • Takeda O, Lu X, Miki T, et al. Thermodynamic evaluation of elemental distribution in a ferronickel electric furnace for the prospect of recycling pathway of nickel. Resour Conserv Recycl. 2018;133:362–368.
  • Barin I. Thermochemical data of pure substances. Weinheim, Germany: VCH Verlagsgesellschaft mbH; 1993.
  • Lukas HL, Fries SG, Sundman B. Computational thermodynamics: the calphad method. New York, USA: Cambridge University Press; 2007.
  • Lu X, Miki T, Hiraki T, et al. Thermodynamics of elements in dilute silicon melts. JOM. 2019;71:1456–1470.
  • Dinsdale AT. SGTE data for pure elements. Calphad. 1991;15:317–425.
  • Yoshikawa T, Morita K, Kawanishi S, et al. Thermodynamics of impurity elements in solid silicon. J Alloys Compd. 2010;490:31–41.
  • Næss MK, Kero I, Tranell G, et al. Element distribution in silicon refining: thermodynamic model and industrial measurements. JOM. 2014;66:2343–2354.
  • Weiss T, Schwerdtfeger K. Chemical equilibria between silicon and slag melts. Metall Mater Trans B. 1994;25:497–504.
  • Teixeira LAV, Tokuda Y, Yoko T, et al. Behavior and state of boron in CaO–SiO2 slags during refining of solar grade silicon. ISIJ Int. 2009;49:777–782.
  • Teixeira LAV, Morita K. Removal of boron from molten silicon using CaO–SiO2 based slags. ISIJ Int. 2009;49:783–787.
  • Jakobsson LK, Tangstad M. Distribution of boron between silicon and CaO-MgO-Al2O3-SiO2 slags. Metall Mater Trans B. 2014;45:1644–1655.
  • Li M, Utigard T, Barati M. Removal of boron and phosphorus from silicon using CaO-SiO2-Na2O-Al2O3 flux. Metall Mater Trans B. 2014;45:221–228.
  • Jakobsson LK, Tangstad M. Thermodynamic activities and distributions of calcium and magnesium between silicon and CaO-MgO-SiO2 Slags at 1873 K (1600 °C). Metall Mater Trans B. 2015;46:595–605.
  • Ahn SH, Jakobsson LK, Tranell G. Distribution of calcium and aluminum between molten silicon and silica-rich CaO-Al2O3-SiO2 Slags at 1823 K (1550°C). Metall Mater Trans B. 2017;48:308–316.
  • Noguchi R, Suzuki K, Tsukihashi F, et al. Thermodynamics of boron in a silicon melt. Metall Mater Trans B. 1994;25:903–907.
  • Sunkar AS, Morita K. Thermodynamic properties of the MgO–BO1.5, CaO–BO1.5, SiO2–BO1.5, MgO–BO1.5–SiO2 and CaO–BO1.5–SiO2 Slag Systems at 1873 K. ISIJ Int. 2009;49:1649–1655.
  • Kume K, Morita K, Miki T, et al. Activity measurement of CaO-SiO2-AlO1.5-MgO slags equilibrated with molten silicon alloys. ISIJ Inter. 2000;40:561–566.
  • Anon. Shanghai Metals Market (SMM). 2018.
  • Anon. The London Metal Exchang (LME)
  • Haynes WM. Density of molten elements and representative salts CRC handbook of chemistry and physics. Boca Raton, FL: CRD Press); 2014. p. 4-128–4-130.
  • Olesinski RW, Gokhale AB, Abbaschian GJ. The Ag-Si (Silver-Silicon) system. Bull Alloy Phase Diagr. 1989;10:635–640.
  • Murray JL, McAlister AJ. The Al-Si (Aluminum-Silicon) system. Bull Alloy Phase Diagr. 1984;5:74–84.
  • Ishida K, Nishizawa T. The Co-Si (Cobalt-Silicon) system. J Phase Equilibria. 1991;12:578–586.
  • Gokhale AB, Abbaschian GJ. The Cr−Si (Chromium-Silicon) system. Bull Alloy Phase Diagr. 1987;8:474–484.
  • Olesinski RW, Abbaschian GJ. The Cu−Si (Copper-Silicon) system. Bull Alloy Phase Diagr. 1986;7:170–178.
  • Kubaschewski O. Fe-Si (iron-silicon) Iron-binary phase diagram. Düsseldorf: Springer-Verlag Berlin Heidelberg GmbH; 1982. p. 136–139.
  • Olesinski RW, Kanani N, Abbaschian GJ. The Ga−Si (Gallium-Silicon) system. Bull Alloy Phase Diagr. 1985;6:362–364.
  • Nayeb-Hashemi AA, Clark JB. The Mg−Si (Magnesium-Silicon) system. Bull Alloy Phase Diagr. 1984;5:584–592.
  • Gokhale AB, Abbaschian R. The Mn-Si (Manganese-Silicon) system. J Phase Equilibria. 1990;11:468–480.
  • Nash P, Nash A. The Ni−Si (Nickel-Silicon) system. Bull Alloy Phase Diagr. 1987;8:6–14.
  • Olesinski RW, Abbaschian GJ. The Pb−Si (Lead−Silicon) system. Bull Alloy Phase Diagr. 1984;5:271–273.
  • Olesinski RW, Abbaschian GJ. The Si−Sn (Silicon−Tin) system. Bull Alloy Phase Diagr. 1984;5:273–276.
  • Murray JL. The Si-Ti (Silicon-Titanium) system phase diagrams of binary titanium alloys. Ohio: Monograph Series on Alloy Phase Diagrams, ASM International, Metals Park; 1988. p. 289–294.
  • Olesinski RW, Abbaschian GJ. The Si-Zn (Silicon-Zinc) system. Bull Alloy Phase Diagr. 1985;6:545–548.
  • Yoshikawa T, Morita K. Removal of phosphorus by the solidification refining with Si–Al melts. Sci Technol Adv Mater. 2003;4:531–537.
  • Yoshikawa T, Morita K. Removal of B from Si by solidification refining with Si-Al melts. Metall Mater Trans B. 2005;36:731–736.
  • Yoshikawa T, Morita K. Refining of silicon during its solidification from a Si–Al melt. J Cryst Growth. 2009;311:776–779.
  • Kero I, Næss MK, Andersen V, et al. Refining kinetics of selected elements in the industrial silicon process. Metall Mater Trans B. 2015;46:1186–1194.
  • Safarian J, Tangstad M. Vacuum refining of molten silicon. Metall Mater Trans B. 2012;43:1427–1445.
  • Ban B, Bai X, Li J, et al. Effect of kinetics on P removal by Al-Si solvent refining at low solidification temperature. J Alloys Compd. 2016;685:604–609.
  • Li Y, Ban B, Li J, et al. Effect of cooling rate on phosphorus removal during Al-Si solvent refining. Metall Mater Trans B. 2015;46:542–544.