1,502
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Solvation of quantum dots in 1-alkyl-1-methylpyrrolidinium ionic liquids: toward stably luminescent composites

ORCID Icon, , , &
Pages 187-194 | Received 29 Jan 2020, Accepted 25 Feb 2020, Published online: 19 Mar 2020

References

  • Dupont J, Scholten JD. On the structural and surface properties of transition-metal nanoparticles in ionic liquids. Chem Soc Rev. 2010;39:1780–1804.
  • Torimoto T, Tsuda T, Okazaki K, et al. New frontiers in materials science opened by ionic liquids. Adv Mater. 2010;22:1196–1221.
  • Dupont J, Fonseca GS, Umpierre AP, et al. Transition-metal nanoparticles in imidazolium ionic liquids: recyclable catalysts for biphasic hydrogenation reactions. J Am Chem Soc. 2002;124:4228–4229.
  • Lu Y, Korf K, Kambe Y, et al. Ionic-liquid-nanoparticle hybrid electrolytes: applications in lithium metal batteries. Angew Chem Int Ed. 2014;53:488–492.
  • Ueno K, Inaba A, Sano Y, et al. A soft glassy colloidal array in ionic liquid, which exhibits homogeneous, non-brilliant and angle-independent structural colours. Chem Commun. 2009;3603–3605.
  • Nakashima T, Sakakibara T, Kawai T. Highly luminescent CdTe nanocrystal-polymer composites based on ionic liquid. Chem Lett. 2005;34:1410–1411.
  • Weingärtner H. Understanding ionic liquids at the molecular level: facts, problems, and controversies. Angew Chem Int Ed. 2008;47:654–670.
  • Fumino K, Wulf A, Ludwig R. Strong, localized, and directional hydrogen bonds fluidize ionic liquids. Angew Chem Int Ed. 2008;47:8731–8734.
  • Canongia Lopes JN, Pádua AA. Nanostructural organization in ionic liquids. J Phys Chem B. 2006;110:3330–3335.
  • Araque JC, Hettige JJ, Margulis CJ. Modern room temperature ionic liquids, a simple guide to understanding their structure and how it may relate to dynamics. J Phys Chem B. 2015;119:12727–12740.
  • Ueno K, Watanabe M. From colloidal stability in ionic liquids to advanced soft materials using unique media. Langmuir. 2011;27:9105–9115.
  • Machado G, Scholten JD, de Vargas T, et al. Structural aspects of transition-metal nanoparticles in imidazolium ionic liquids.Int J Nanotechnol. 2007;4:541–563.
  • Gao J, Ndong RS, Shiflett MB, et al. Creating nanoparticle stability in ionic liquid [C4mim][BF4] by inducing solvation layering. ACS Nano. 2015;9:3243–3253.
  • Kamysbayev V, Srivastava V, Ludwig NB, et al. Nanocrystals in molten salts and ionic liquids: experimental observation of ionic correlations extending beyond the Debye length. ACS Nano. 2019;13:5760–5770.
  • Hayes R, Warr GG, Atkin R. At the interface: solvation and designing ionic liquids. Phys Chem Chem Phys. 2010;12:1709–1723.
  • Horn RG, Evans DF, Ninham BW. Double-layer and solvation forces measured in a molten-salt and its mixtures with water. J Phys Chem. 1988;92:3531–3537.
  • Ueno K, Kasuya M, Watanabe M, et al. Resonance shear measurement of nanoconfined ionic liquids. Phys Chem Chem Phys. 2010;12:4066–4071.
  • Mezger M, Schroder H, Reichert H, et al. Molecular layering of fluorinated ionic liquids at a charged sapphire (0001) surface. Science. 2008;322:424–428.
  • Sha M, Wu G, Dou Q, et al. Double-layer formation of [Bmim][PF6] ionic liquid triggered by surface negative charge. Langmuir. 2010;26:12667–12672.
  • Kalsin AM, Fialkowski M, Paszewski M, et al. Electrostatic self-assembly of binary nanoparticle crystals with a diamond-like lattice. Science. 2006;312:420–424.
  • Bishop KJ, Wilmer CE, Soh S, et al. Nanoscale forces and their uses in self-assembly. Small. 2009;5:1600–1630.
  • Devatha G, Roy S, Rao A, et al. Electrostatically driven resonance energy transfer in “cationic” biocompatible indium phosphide quantum dots. Chem Sci. 2017;8:3879–3884.
  • Rao A, Roy S, Unnikrishnan M, et al. Regulation of interparticle forces reveals controlled aggregation in charged nanoparticles. Chem Mater. 2016;28:2348–2355.
  • Tatumi R, Fujihara H. Remarkably stable gold nanoparticles functionalized with a zwitterionic liquid based on imidazolium sulfonate in a high concentration of aqueous electrolyte and ionic liquid. Chem Commun. 2005;83–85.
  • Moganty SS, Srivastava S, Lu Y, et al. Ionic liquid-tethered nanoparticle suspensions: a novel class of ionogels. Chem Mater. 2012;24:1386–1392.
  • Nakashima T, Kawai T. Quantum dots-ionic liquid hybrids: efficient extraction of cationic CdTe nanocrystals into an ionic liquid. Chem Commun. 2005;1643–1645.
  • Taniguchi Y, Yasue K, Kawai T, et al. A versatile surface design to disperse nanoparticles in ionic liquids and organic solvents. Chem Lett. 2016;45:898–900.
  • Nonoguchi Y, Nakashima T, Kawai T. Size- and temperature-dependent emission properties of zinc-blende CdTe nanocrystals in ionic liquid. J Phys Chem C. 2007;111:11811–11815.
  • Blundell RK, Licence P. Tuning cation-anion interactions in ionic liquids by changing the conformational flexibility of the cation. Chem Commun. 2014;50:12080–12083.
  • Nakashima T, Hayakawa Y, Mori M, et al. Preparation of fusion materials based on ionic liquids and cationic gold nanoparticles. Polym J. 2015;47:171–176.
  • Yu WW, Qu L, Guo W, et al. Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem Mater. 2003;15:2854–2860.
  • Yonezawa T, Onoue S, Kimizuka N. Metal coating of DNA molecules by cationic, metastable gold nanoparticles. Chem Lett. 2002;31:1172–1173.
  • Henderson WA, Young VG, Passerini S, et al. Plastic phase transitions in N-ethyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide. Chem Mater. 2006;18:934–938.
  • Ping ZH, Nguyen QT, Chen SM, et al. State of water in different hydrophilic polymers–DSC and FTIR studies. Polymers. 2001;42:8461–8467.
  • Shekibi Y, Gray-Weale A, MacFarlane DR, et al. Nanoparticle enhanced conductivity in organic ionic plastic crystals: space charge versus strain induced defect mechanism. J Phys Chem C. 2007;111:11463–11468.
  • Atkin R, Warr GG. Structure in confined room-temperature ionic liquids. J Phys Chem C. 2007;111:5162–5168.
  • Li S, Bañuelos JL, Guo J, et al. Alkyl chain length and temperature effects on structural properties of pyrrolidinium-based ionic liquids: A combined atomistic simulation and small-angle x-ray scattering study. J Phys Chem Lett. 2012;3:125–130.
  • Santos CS, Murthy NS, Baker GA, et al. X-ray scattering from ionic liquids with pyrrolidinium cations. J Chem Phys. 2011;134:121101.
  • Kashyap HK, Hettige JJ, Annapureddy HV, et al. SAXS anti-peaks reveal the length-scales of dual positive-negative and polar-apolar ordering in room-temperature ionic liquids. Chem Commun. 2012;48:5103–5105.
  • Fujie K, Yamada T, Ikeda R, et al. Introduction of an ionic liquid into the micropores of a metal-organic framework and its anomalous phase behavior. Angew Chem Int Ed. 2014;53:11302–11305.
  • Suzuki S, Hattori Y, Kuwabata S, et al. Improvement of photoluminescence stability of ZnS-AgInS2 nanoparticles through interactions with ionic liquids. J Photochem Photobiol A. 2017;332:371–375.
  • Adam M, Wang Z, Dubavik A, et al. Liquid-liquid diffusion-assisted crystallization: a fast and versatile approach toward high quality mixed quantum dot-salt crystals. Adv Funct Mater. 2015;25:2638–2645.
  • Demir HV, Nizamoglu S, Erdem T, et al. Quantum dot integrated LEDs using photonic and excitonic color conversion. Nano Today. 2011;6:632–647.