8,902
Views
32
CrossRef citations to date
0
Altmetric
Focus on Composite Materials for Functional Electronic Devices

Recent advances in synthesis and application of perovskite quantum dot based composites for photonics, electronics and sensors

, , , ORCID Icon & ORCID Icon
Pages 278-302 | Received 19 Jan 2020, Accepted 03 Apr 2020, Published online: 12 May 2020

References

  • Zhang S, Sunami Y, Hashimoto H. Mini review: nanosheet technology towards biomedical application. Nanomaterials-Basel. 2017;7(9):246.
  • Shamsaei E, de Souza FB, Yao X, et al. Graphene-based nanosheets for stronger and more durable concrete: A review. Constr Build Mater. 2018;183:642–660.
  • LaPierre RR, Chia ACE, Gibson SJ, et al. III–V nanowire photovoltaics: review of design for high efficiency. Phys Status Solidi-R. 2013;7(10):815–830.
  • Zimmler MA, Capasso F, Müller S, et al. Optically pumped nanowire lasers: invited review. Semicond Sci Tech. 2010;25(2):024001.
  • Langley D, Giusti G, Mayousse C, et al. Flexible transparent conductive materials based on silver nanowire networks: a review. Nanotechnology. 2013;24(45):452001.
  • Yogi C, Kojima K, Hashishin T, et al. Size effect of Au nanoparticles on TiO2 crystalline phase of nanocomposite thin films and their photocatalytic properties. J Phys Chem C. 2011;115(14):6554–6560.
  • Liu L, Chan J, Sham T-K. Calcination-induced phase transformation and accompanying optical luminescence of TiO2 nanotubes: an X-ray absorption near-edge structures and X-ray excited optical luminescence study. J Phys Chem C. 2010;114(49):21353–21359.
  • Kuo -C-C, Lin C-H, Chen W-C. Morphology and photophysical properties of light-emitting electrospun nanofibers prepared from poly(fluorene) derivative/PMMA blends. Macromolecules. 2007;40(19):6959–6966.
  • Chen -Y-Y, Kuo -C-C, Chen B-Y, et al. Multifunctional polyacrylonitrile-ZnO/Ag electrospun nanofiber membranes with various ZnO morphologies for photocatalytic, UV-shielding, and antibacterial applications. J Polym Sci Pol Phys. 2015;53(4):262–269.
  • Ding G, Yang B, Zhou K, et al. Synaptic plasticity and filtering emulated in metal–organic frameworks nanosheets based transistors. Adv Electron Mater. 2020;6(1):1900978.
  • Ding G, Zeng K, Zhou K, et al. Configurable multi-state non-volatile memory behaviors in Ti3C2 nanosheets. Nanoscale. 2019;11(15):7102–7110.
  • Qian L, Zheng Y, Xue J, et al. Stable and efficient quantum-dot light-emitting diodes based on solution-processed multilayer structures. Nat Photonics. 2011;5(9):543–548.
  • Colvin VL, Schlamp MC, Alivisatos AP. Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature. 1994;370(6488):354–357.
  • Coe S, Woo W-K, Bawendi M, et al. Electroluminescence from single monolayers of nanocrystals in molecular organic devices. Nature. 2002;420(6917):800–803.
  • Dang C, Lee J, Breen C, et al. Red, green and blue lasing enabled by single-exciton gain in colloidal quantum dot films. Nat Nanotechnol. 2012;7(5):335–339.
  • Nozik AJ. Quantum dot solar cells. Physica E. 2002;14(1):115–120.
  • Kamat PV. Quantum dot solar cells. The next big thing in photovoltaics. J Phys Chem Lett. 2013;4(6):908–918.
  • Malgras V, Nattestad A, Kim JH, et al. Understanding chemically processed solar cells based on quantum dots. Sci Technol Adv Mat. 2017;18(1):334–350.
  • Konstantatos G, Howard I, Fischer A, et al. Ultrasensitive solution-cast quantum dot photodetectors. Nature. 2006;442(7099):180–183.
  • Bera D, Qian L, Tseng T-K, et al. Quantum dots and their multimodal applications: a review. Materials. 2010;3(4):2260–2345.
  • Ghaderi S, Ramesh B, Seifalian AM. Fluorescence nanoparticles “quantum dots” as drug delivery system and their toxicity: a review. J Drug Target. 2011;19(7):475–486.
  • Frigerio C, Ribeiro DSM, Rodrigues SSM, et al. Application of quantum dots as analytical tools in automated chemical analysis: A review. Anal Chim Acta. 2012;735:9–22.
  • Algar WR, Tavares AJ, Krull UJ. Beyond labels: A review of the application of quantum dots as integrated components of assays, bioprobes, and biosensors utilizing optical transduction. Anal Chim Acta. 2010;673(1):1–25.
  • Ai B, Liu C, Wang J, et al. Precipitation and optical properties of CsPbBr3Quantum dots in phosphate glasses. J Am Ceram Soc. 2016;99(9):2875–2877.
  • Chamarro M, Gourdon C, Lavallard P, et al. Enhancement of electron-hole exchange interaction in CdSe nanocrystals: A quantum confinement effect. Phys Rev B. 1996;53(3):1336–1342.
  • Jun Y-W, Choi C-S, Cheon J. Size and shape controlled ZnTe nanocrystals with quantum confinement effect. Chem Commun (Camb). 2001;1:101–102.
  • Chen L, Lai C, Marchewka R, et al. Use of CdS quantum dot-functionalized cellulose nanocrystal films for anti-counterfeiting applications. Nanoscale. 2016;8(27):13288–13296.
  • Yamasaki Y, Asami H, Isoshima T, et al. Multi-wavelength intermittent photoluminescence of single CdSe quantum dots. Sci Technol Adv Mat. 2003;4(6):519–522.
  • Samadpour M. Efficient CdS/CdSe/ZnS quantum dot sensitized solar cells prepared by ZnS treatment from methanol solvent. Sol Energy. 2017;144:63–70.
  • Shen Q, Katayama K, Sawada T, et al. Ultrafast carrier dynamics in PbS quantum dots. Chem Phys Lett. 2012;542:89–93.
  • Ahmad W, He J, Liu Z, et al. Lead Selenide (PbSe) colloidal quantum dot solar cells with >10% efficiency. Adv Mater. 2019;31(33):1900593.
  • Li Y, Wang Z, Ren D, et al. SnS quantum dots as hole transporter of perovskite solar cells. ACS Appl Energ Mater. 2019;2(5):3822–3829.
  • Oda Y, Shen H, Zhao L, et al. Energetic alignment in nontoxic SnS quantum dot-sensitized solar cell employing spiro-OMeTAD as the solid-state electrolyte. Sci Technol Adv Mat. 2014;15(3):035006.
  • Zhang Y, Hao S, Zhao L-D, et al. Pressure induced thermoelectric enhancement in SnSe crystals. J Mater Chem A. 2016;4(31):12073–12079.
  • Ghosh B, Shirahata N. Colloidal silicon quantum dots: synthesis and luminescence tuning from the near-UV to the near-IR range. Sci Technol Adv Mat. 2014;15(1):014207.
  • Le QV, Hong K, Jang HW, et al. Halide perovskite quantum dots for light-emitting diodes: properties, synthesis, applications, and outlooks. Adv Electron Mater. 2018;4(12):1800335.
  • Jung M, Shin TJ, Seo J, et al. Structural features and their functions in surfactant-armoured methylammonium lead iodide perovskites for highly efficient and stable solar cells. Energ Environ Sci. 2018;11(8):2188–2197.
  • Huang H, Bodnarchuk MI, Kershaw SV, et al. Lead halide perovskite nanocrystals In The Research Spotlight: stability and defect tolerance. ACS Energy Lett. 2017;2(9):2071–2083.
  • Shi Z, Li Y, Zhang Y, et al. High-efficiency and air-stable perovskite quantum dots light-emitting diodes with an all-inorganic heterostructure. Nano Lett. 2017;17(1):313–321.
  • Mei S, Liu X, Zhang W, et al. High-bandwidth white-light system combining a micro-LED with perovskite quantum dots for visible light communication. ACS Appl Mater Inter. 2018;10(6):5641–5648.
  • Zhang X, Liu H, Wang W, et al. Hybrid perovskite light-emitting diodes based on perovskite nanocrystals with organic–inorganic mixed cations. Adv Mater. 2017;29(18):1606405.
  • Jiang C, Yao J, Huang P, et al. Perovskite quantum dots exhibiting strong hole extraction capability for efficient inorganic thin film solar cells. Cell Rep Phys Sci. 2020;1(1):100001.
  • Ramasamy P, Lim D-H, Kim B, et al. All-inorganic cesium lead halide perovskite nanocrystals for photodetector applications. Chem Commun (Camb). 2016;52(10):2067–2070.
  • Li Y, Shu Q, Du Q, et al. Surface modification for improving the photocatalytic polymerization of 3,4-ethylenedioxythiophene over inorganic lead halide perovskite quantum dots. ACS Appl Mater Inter. 2020;12(1):451–460.
  • Yang H, Liu Y, Wu X, et al. High-performance all-inorganic perovskite-quantum-dot-based flexible organic phototransistor memory with architecture design. Adv Electron Mater. 2019;5(12):1900864.
  • Dai S-W, Hsu B-W, Chen C-Y, et al. Perovskite quantum dots with near unity solution and neat-film photoluminescent quantum yield by novel spray synthesis. Adv Mater. 2018;30(7):1705532.
  • Zhao Y, Li J, Dong Y, et al. Synthesis of colloidal halide perovskite quantum dots/nanocrystals: progresses and advances. Isr J Chem. 2019;59(8):649–660.
  • Moon H, Lee C, Lee W, et al. Stability of quantum dots, quantum dot films, and quantum dot light-emitting diodes for display applications. Adv Mater. 2019;31(34):1804294.
  • Yang J, Siempelkamp BD, Liu D, et al. Investigation of CH3NH3PbI3 degradation rates and mechanisms in controlled humidity environments using in situ techniques. ACS Nano. 2015;9(2):1955–1963.
  • Christians JA, Miranda Herrera PA, Kamat PV. Transformation of the excited state and photovoltaic efficiency of CH3NH3PbI3 perovskite upon controlled exposure to humidified air. J Am Chem Soc. 2015;137(4):1530–1538.
  • Huang S, Li Z, Wang B, et al. Morphology evolution and degradation of CsPbBr3 nanocrystals under blue light-emitting diode illumination. ACS Appl Mater Inter. 2017;9(8):7249–7258.
  • Palazon F, Di Stasio F, Lauciello S, et al. Evolution of CsPbBr3 nanocrystals upon post-synthesis annealing under an inert atmosphere. J Mater Chem C. 2016;4(39):9179–9182.
  • Lv W, Li L, Xu M, et al. Improving the stability of metal halide perovskite quantum dots by encapsulation. Adv Mater. 2019;31(28):e1900682.
  • Liu J, Yang Z, Ye B, et al. A review of stability-enhanced luminescent materials: fabrication and optoelectronic applications. J Mater Chem C. 2019;7(17):4934–4955.
  • Protesescu L, Yakunin S, Bodnarchuk MI, et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 2015;15(6):3692–3696.
  • Shamsi J, Urban AS, Imran M, et al. Metal halide perovskite nanocrystals: synthesis, post-synthesis modifications, and their optical properties. Chem Rev. 2019;119(5):3296–3348.
  • Liu M, Zhang H, Gedamu D, et al. Halide perovskite nanocrystals for next-generation optoelectronics. Small. 2019;15(28):1900801.
  • Katan C, Mercier N, Even J. Quantum and dielectric confinement effects in lower-dimensional hybrid perovskite semiconductors. Chem Rev. 2019;119(5):3140–3192.
  • Song J, Li J, Li X, et al. Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3). Adv Mater. 2015;27(44):7162–7167.
  • Liu C, Wang K, Gong X, et al. Low bandgap semiconducting polymers for polymeric photovoltaics. Chem Soc Rev. 2016;45(17):4825–4846.
  • Kim Y-H, Wolf C, Kim Y-T, et al. Highly efficient light-emitting diodes of colloidal metal–halide perovskite nanocrystals beyond quantum size. ACS Nano. 2017;11(7):6586–6593.
  • Kim Y-H, Lee G-H, Kim Y-T, et al. High efficiency perovskite light-emitting diodes of ligand-engineered colloidal formamidinium lead bromide nanoparticles. Nano Energy. 2017;38:51–58.
  • Jeon NJ, Noh JH, Kim YC, et al. Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nat Mater. 2014;13(9):897–903.
  • Wei Y, Cheng Z, Lin J. An overview on enhancing the stability of lead halide perovskite quantum dots and their applications in phosphor-converted LEDs. Chem Soc Rev. 2019;48(1):310–350.
  • Quan LN, Rand BP, Friend RH, et al. Perovskites for next-generation optical sources. Chem Rev. 2019;119(12):7444–7477.
  • Zhou Y, Zhao H, Ma D, et al. Harnessing the properties of colloidal quantum dots in luminescent solar concentrators. Chem Soc Rev. 2018;47(15):5866–5890.
  • Wang H, Kim DH. Perovskite-based photodetectors: materials and devices. Chem Soc Rev. 2017;46(17):5204–5236.
  • Zeng Z, Xu Y, Zhang Z, et al. Rare-earth-containing perovskite nanomaterials: design, synthesis, properties and applications. Chem Soc Rev. 2020;49(4):1109–1143.
  • Zhong Q, Cao M, Hu H, et al. One-pot synthesis of highly stable CsPbBr3@SiO2 core-shell nanoparticles. ACS Nano. 2018;12(8):8579–8587.
  • Li Z-J, Hofman E, Li J, et al. Photoelectrochemically active and environmentally stable CsPbBr3/TiO2Core/shell nanocrystals. Adv Funct Mater. 2018;28(1):1704288.
  • Selvan ST, Tan TT, Ying JY. Robust, non-cytotoxic, silica-coated CdSe quantum dots with efficient photoluminescence. Adv Mater. 2005;17(13):1620–1625.
  • Zhao B, Yao Y, Gao M, et al. Doped quantum dot@silica nanocomposites for white light-emitting diodes. Nanoscale. 2015;7(41):17231–17236.
  • Venkateswara Rao A, Bhagat SD. Synthesis and physical properties of TEOS-based silica aerogels prepared by two step (acid–base) sol–gel process. Solid State Sci. 2004;6(9):945–952.
  • Sun C, Zhang Y, Ruan C, et al. Efficient and stable white LEDs with silica-coated inorganic perovskite quantum dots. Adv Mater. 2016;28(45):10088–10094.
  • Hu Z, Liu Z, Bian Y, et al. Enhanced two-photon-pumped emission from in situ synthesized nonblinking CsPbBr3/SiO2 nanocrystals with excellent stability. Adv Opt Mater. 2018;6(3):1700997.
  • Cai J, Gu K, Zhu Y, et al. Highly stable CsPbBr3@SiO2 nanocomposites prepared via confined condensation for use as a luminescent ink. Chem Commun (Camb). 2018;54(58):8064–8067.
  • Hu H, Wu L, Tan Y, et al. Interfacial synthesis of highly stable CsPbX3/oxide janus nanoparticles. J Am Chem Soc. 2018;140(1):406–412.
  • Wei Y, Xiao H, Xie Z, et al. Highly luminescent lead halide perovskite quantum dots in hierarchical CaF2 matrices with enhanced stability as phosphors for white light-emitting diodes. Adv Opt Mater. 2018;6(11):1701343.
  • Yang G, Fan Q, Chen B, et al. Reprecipitation synthesis of luminescent CH3NH3PbBr3/NaNO3 nanocomposites with enhanced stability. J Mater Chem C. 2016;4(48):11387–11391.
  • Pang X, Zhang H, Xie L, et al. Precipitating CsPbBr3 quantum dots in boro-germanate glass with a dense structure and inert environment toward highly stable and efficient narrow-band green emitters for wide-color-gamut liquid crystal displays. J Mater Chem C. 2019;7(42):13139–13148.
  • Sun C, Shen X, Zhang Y, et al. Highly luminescent, stable, transparent and flexible perovskite quantum dot gels towards light-emitting diodes. Nanotechnology. 2017;28(36):365601.
  • Cao P, Yang B, Zheng F, et al. High stability of silica-wrapped CsPbBr3 perovskite quantum dots for light emitting application. Ceram Int. 2019;46(3):3882–3888.
  • Park DH, Han JS, Kim W, et al. Facile synthesis of thermally stable CsPbBr3 perovskite quantum dot-inorganic SiO2 composites and their application to white light-emitting diodes with wide color gamut. Dyes Pigm. 2018;149:246–252.
  • Song T, Feng X, Ju H, et al. Enhancing acid, base and UV light resistance of halide perovskite CH3NH3PbBr3 quantum dots by encapsulation with ZrO2 sol. J Alloy Compd. 2019;816:152558.
  • Li Z, Kong L, Huang S, et al. Highly luminescent and ultrastable CsPbBr3 perovskite quantum dots incorporated into a silica/alumina monolith. Angew Chem Int Ed Engl. 2017;56(28):8134–8138.
  • Yoon HC, Lee S, Song JK, et al. Efficient and stable CsPbBr3 quantum-dot powders passivated and encapsulated with a mixed silicon nitride and silicon oxide inorganic polymer matrix. ACS Appl Mater Inter. 2018;10(14):11756–11767.
  • Loiudice A, Saris S, Oveisi E, et al. CsPbBr3 QD/AlOx inorganic nanocomposites with exceptional stability in water, light, and heat. Angew Chem Int Ed Engl. 2017;56(36):10696–10701.
  • Yin B, Sadtler B, Berezin MY, et al. Quantum dots protected from oxidative attack using alumina shells synthesized by atomic layer deposition. Chem Commun (Camb). 2016;52(74):11127–11130.
  • Di D, Musselman KP, Li G, et al. Size-dependent photon emission from organometal halide perovskite nanocrystals embedded in an organic matrix. J Phys Chem Lett. 2015;6(3):446–450.
  • Li G, Tan ZK, Di D, et al. Efficient light-emitting diodes based on nanocrystalline perovskite in a dielectric polymer matrix. Nano Lett. 2015;15(4):2640–2644.
  • Zhou Q, Bai Z, Lu WG, et al. In situ fabrication of halide perovskite nanocrystal-embedded polymer composite films with enhanced photoluminescence for display backlights. Adv Mater. 2016;28(41):9163–9168.
  • Wang Y, He J, Chen H, et al. Ultrastable, highly luminescent organic-inorganic perovskite-polymer composite films. Adv Mater. 2016;28(48):10710–10717.
  • Chen D, Yuan S, Chen J, et al. Robust CsPbX3(X = Cl, Br, and I) perovskite quantum dot embedded glasses: nanocrystallization, improved stability and visible full-spectral tunable emissions. J Mater Chem C. 2018;6(47):12864–12870.
  • Yuan S, Chen D, Li X, et al. In situ crystallization synthesis of CsPbBr3 perovskite quantum dot-embedded glasses with improved stability for solid-state lighting and random upconverted lasing. ACS Appl Mater Inter. 2018;10(22):18918–18926.
  • Chen D, Liu Y, Yang C, et al. Promoting photoluminescence quantum yields of glass-stabilized CsPbX3 (X = Cl, Br, I) perovskite quantum dots through fluorine doping. Nanoscale. 2019;11(37):17216–17221.
  • Ye Y, Zhang W, Zhao Z, et al. Highly luminescent cesium lead halide perovskite nanocrystals stabilized in glasses for light-emitting applications. Adv Opt Mater. 2019;7(9):1801663.
  • Wei S, Zhu H, Zhang J, et al. Luminescent perovskite nanocrystal-epoxy resin composite with high stability against water and air. J Alloy Compd. 2019;789:209–214.
  • Wang Y, Zhu Y, Huang J, et al. CsPbBr3 perovskite quantum dots-based monolithic electrospun fiber membrane as an ultrastable and ultrasensitive fluorescent sensor in aqueous medium. J Phys Chem Lett. 2016;7(21):4253–4258.
  • Liao H, Guo S, Cao S, et al. A general strategy for in situ growth of all-inorganic CsPbX3 (X = Br, I, and Cl) perovskite nanocrystals in polymer fibers toward significantly enhanced water/thermal stabilities. Adv Opt Mater. 2018;6(15):1800346.
  • Xin Y, Zhao H, Zhang J. Highly stable and luminescent perovskite–polymer composites from a convenient and universal strategy. ACS Appl Mater Inter. 2018;10(5):4971–4980.
  • Wang H-C, Lin S-Y, Tang A-C, et al. Mesoporous silica particles integrated with all-inorganic CsPbBr3 perovskite quantum-dot nanocomposites (MP-PQDs) with high stability and wide color gamut used for backlight display. Angew Chem Int Ed Engl. 2016;55(28):7924–7929.
  • Malgras V, Tominaka S, Ryan JW, et al. Observation of quantum confinement in monodisperse methylammonium lead halide perovskite nanocrystals embedded in mesoporous silica. J Am Chem Soc. 2016;138(42):13874–13881.
  • Zhenfu Z, Zhihai W, Jiong C, et al. Nanocomposites of perovskite quantum dots embedded in magnesium silicate hollow spheres for multicolor display. J Phys Chem C. 2018;122(29):16887–16893.
  • Demchyshyn S, Roemer JM, Groiß H, et al. Confining metal-halide perovskites in nanoporous thin films. Sci Adv. 2017;3(8):e1700738.
  • Cha W, Kim H-J, Lee S, et al. Size-controllable and stable organometallic halide perovskite quantum dots/polymer films. J Mater Chem C. 2017;5(27):6667–6671.
  • Kojima A, Ikegami M, Teshima K, et al. Highly luminescent lead bromide perovskite nanoparticles synthesized with porous alumina media. Chem Lett. 2012;41(4):397–399.
  • Li Y, Lv Y, Guo Z, et al. One-step preparation of long-term stable and flexible CsPbBr3 perovskite quantum dots/ethylene vinyl acetate copolymer composite films for white light-emitting diodes. ACS Appl Mater Inter. 2018;10(18):15888–15894.
  • Tan L, Guo M, Tan J, et al. Development of high-luminescence perovskite quantum dots coated with molecularly imprinted polymers for pesticide detection by slowly hydrolysing the organosilicon monomers in situ. Sensors Actuat B-Chem. 2019;291:226–234.
  • Huang S, Guo M, Tan J, et al. Novel fluorescence sensor based on all-inorganic perovskite quantum dots coated with molecularly imprinted polymers for highly selective and sensitive detection of omethoate. ACS Appl Mater Inter. 2018;10(45):39056–39063.
  • Xuan T, Huang J, Liu H, et al. Super-hydrophobic cesium lead halide perovskite quantum dot-polymer composites with high stability and luminescent efficiency for wide color gamut white light-emitting diodes. Chem Mater. 2019;31(3):1042–1047.
  • Kojima A, Teshima K, Shirai Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc. 2009;131(17):6050–6051.
  • Longo G, Pertegás A, Martínez-Sarti L, et al. Highly luminescent perovskite–aluminum oxide composites. J Mater Chem C. 2015;3(43):11286–11289.
  • Zheng Z, Zhuge F, Wang Y, et al. Decorating perovskite quantum dots in TiO2 nanotubes array for broadband response photodetector. Adv Funct Mater. 2017;27(43):1703115.
  • Lu J, Sheng X, Tong G, et al. Ultrafast solar-blind ultraviolet detection by inorganic perovskite CsPbX3 quantum dots radial junction architecture. Adv Mater. 2017;29(23):1700400.
  • Zhao Y, Wang Y, Liang X, et al. Enhanced photocatalytic activity of Ag-CsPbBr3/CN composite for broad spectrum photocatalytic degradation of cephalosporin antibiotics 7-ACA. Appl Catal B-Environ. 2019;247:57–69.
  • Xu YF, Yang MZ, Chen BX, et al. A CsPbBr3 perovskite quantum dot/graphene oxide composite for photocatalytic CO2 reduction. J Am Chem Soc. 2017;139(16):5660–5663.
  • Zhou L, Yu K, Yang F, et al. Insight into the effect of ligand-exchange on colloidal CsPbBr3 perovskite quantum dot/mesoporous-TiO2 composite-based photodetectors: much faster electron injection. J Mater Chem C. 2017;5(25):6224–6233.
  • Li X, Wang Y, Sun H, et al. Amino-mediated anchoring perovskite quantum dots for stable and low-threshold random lasing. Adv Mater. 2017;29(36):1701185.
  • Lou S, Xuan T, Yu C, et al. Nanocomposites of CsPbBr3 perovskite nanocrystals in an ammonium bromide framework with enhanced stability. J Mater Chem C. 2017;5(30):7431–7435.
  • Mocatta D, Cohen G, Schattner J, et al. Heavily doped semiconductor nanocrystal quantum dots. Science. 2011;332(6025):77.
  • Zou S, Liu Y, Li J, et al. Stabilizing cesium lead halide perovskite lattice through Mn(II) substitution for air-stable light-emitting diodes. J Am Chem Soc. 2017;139(33):11443–11450.
  • Wang F, Yang M, Ji S, et al. Boosting spectral response of multi-crystalline Si solar cells with Mn2+ doped CsPbCl3 quantum dots downconverter. J Power Sources. 2018;395:85–91.
  • Liu W, Lin Q, Li H, et al. Mn2+-doped lead halide perovskite nanocrystals with dual-color emission controlled by halide content. J Am Chem Soc. 2016;138(45):14954–14961.
  • Parobek D, Roman BJ, Dong Y, et al. Exciton-to-dopant energy transfer in Mn-doped cesium lead halide perovskite nanocrystals. Nano Lett. 2016;16(12):7376–7380.
  • Liu S, Shao G, Ding L, et al. Sn-doped CsPbBr3 QDs glasses with excellent stability and optical properties for WLED. Chem Eng J. 2019;361:937–944.
  • Yao J-S, Ge J, Han B-N, et al. Ce3+-doping to modulate photoluminescence kinetics for efficient CsPbBr3 nanocrystals based light-emitting diodes. J Am Chem Soc. 2018;140(10):3626–3634.
  • Wu J, Bai H, Qu W, et al. Preparation of Eu3+-doped CsPbBr3 quantum-dot microcrystals and their luminescence properties. Opt Mater. 2019;97:109454.
  • Liu S, He M, Di X, et al. Precipitation and tunable emission of cesium lead halide perovskites (CsPbX3, X = Br, I) QDs in borosilicate glass. Ceram Int. 2018;44(4):4496–4499.
  • He M, Cheng Y, Yuan R, et al. Mn-doped cesium lead halide perovskite nanocrystals with dual-color emission for WLED. Dyes Pigm. 2018;152:146–154.
  • He M, Cheng Y, Shen L, et al. Mn-doped CsPbCl3 perovskite quantum dots (PQDs) incorporated into silica/alumina particles used for WLEDs. Appl Surf Sci. 2018;448:400–406.
  • Chen D, Fang G, Chen X. Silica-coated Mn-doped CsPb(Cl/Br)3 inorganic perovskite quantum dots: exciton-to-Mn energy transfer and blue-excitable solid-state lighting. ACS Appl Mater Inter. 2017;9(46):40477–40487.
  • Yan W, Qu Y, Gupta TD, et al. Semiconducting nanowire-based optoelectronic fibers. Adv Mater. 2017;29(27):606405.
  • Xu B, Wang W, Zhang X, et al. Bright and efficient light-emitting diodes based on MA/Cs double cation perovskite nanocrystals. J Mater Chem C. 2017;5(25):6123–6128.
  • Song P, Qiao B, Song D, et al. Colour- and structure-stable CsPbBr3-CsPb2Br5 compounded quantum dots with tuneable blue and green light emission. J Alloy Compd. 2018;767:98–105.
  • Zhang X, Xu B, Zhang J, et al. All-inorganic perovskite nanocrystals for high-efficiency light emitting diodes: dual-Phase CsPbBr3-CsPb2Br5 composites. Adv Funct Mater. 2016;26(25):4595–4600.
  • Akkerman QA, Park S, Radicchi E, et al. Nearly monodisperse insulator Cs4PbX6 (X = Cl, Br, I) nanocrystals, their mixed halide compositions, and their transformation into CsPbX3 nanocrystals. Nano Lett. 2017;17(3):1924–1930.
  • Yang H, Zhang Y, Pan J, et al. Room-temperature engineering of all-inorganic perovskite nanocrsytals with different dimensionalities. Chem Mater. 2017;29(21):8978–8982.
  • Li W, Deng W, Fan X, et al. Low toxicity antisolvent synthesis of composition-tunable luminescent all-inorganic perovskite nanocrystals. Ceram Int. 2018;44(15):18123–18128.
  • Xu L, Chen J, Song J, et al. Double-protected all-inorganic perovskite nanocrystals by crystalline matrix and silica for triple-modal anti-counterfeiting codes. ACS Appl Mater Inter. 2017;9(31):26556–26564.
  • Lou S, Xuan T, Liang Q, et al. Controllable and facile synthesis of CsPbBr3-Cs4PbBr6 perovskite composites in pure polar solvent. J Colloid Interf Sci. 2018;10:384–388.
  • Wang B, Zhang C, Huang S, et al. Postsynthesis phase transformation for CsPbBr3/Rb4PbBr6 core/shell nanocrystals with exceptional photostability. ACS Appl Mater Inter. 2018;11(15):23303–23310.
  • Nguyen TP, Ozturk A, Park J, et al. Facile synthesis of CsPbBr3/PbSe composite clusters. Sci Technol Adv Mat. 2016;138(45):10–17.
  • Chen W, Hao J, Hu W, et al. Enhanced stability and tunable photoluminescence in perovskite CsPbX3/ZnS quantum dot heterostructure. Small. 2017;13(21):1604085.
  • Pathak S, Sakai N, Wisnivesky Rocca Rivarola F, et al. Perovskite crystals for tunable white light emission. Chem Mater. 2017;29(27):8066–8075.
  • Li X, Wu Y, Zhang S, et al. CsPbX3 quantum dots for lighting and displays: room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes. Adv Funct Mater. 2018;19(1):2435–2445.
  • Hai J, Li H, Zhao Y, et al. Designing of blue, green, and red CsPbX3 perovskite-codoped flexible films with water resistant property and elimination of anion-exchange for tunable white light emission. Chem Commun (Camb). 2017;53(39):5400–5403.
  • Ren J, Li T, Zhou X, et al. Encapsulating all-inorganic perovskite quantum dots into mesoporous metal organic frameworks with significantly enhanced stability for optoelectronic applications. Chem Eng J. 2017;53:30–39.
  • Zhang M, Wang M, Yang Z, et al. Preparation of all-inorganic perovskite quantum dots-polymer composite for white LEDs application. J Alloy Compd. 2018;748:537–545.
  • Di X, Jiang J, Hu Z, et al. Stable and brightly luminescent all-inorganic cesium lead halide perovskite quantum dots coated with mesoporous silica for warm WLED. Dyes Pigm. 2017;146:361–367.
  • Zhang L, Yang X, Jiang Q, et al. Ultra-bright and highly efficient inorganic based perovskite light-emitting diodes. Nat Commun. 2017;8(1):15640.
  • Yang X, Zhang X, Deng J, et al. Efficient green light-emitting diodes based on quasi-two-dimensional composition and phase engineered perovskite with surface passivation. Nat Commun. 2018;9(1):570.
  • Huang S, Li Z, Kong L, et al. Enhancing the stability of CH3NH3PbBr3 quantum dots by embedding in silica spheres derived from tetramethyl orthosilicate in “Waterless” toluene. J Am Chem Soc. 2016;138(18):5749–5752.
  • Liu L, Li J, McLeod JA. Influence of Eu-substitution on luminescent CH3NH3PbBr3 quantum dots. Nanoscale. 2018;10(24):11452–11459.
  • Yuan R, Shen L, Shen C, et al. CsPbBr3:xEu3+ perovskite QD borosilicate glass: a new member of the luminescent material family. Chem Commun. 2015;27(23):3395–3398.
  • Kim H-S, Lee J-W, Yantara N, et al. High efficiency solid-state sensitized solar cell-based on submicrometer rutile TiO2 nanorod and CH3NH3PbI3 perovskite sensitizer. Nano Lett. 2013;13(6):2412–2417.
  • Tan H, Jain A, Voznyy O, et al. Efficient and stable solution-processed planar perovskite solar cells via contact passivation. Science. 2017;355(6326):722.
  • Scheidt RA, Kerns E, Kamat PV. Interfacial charge transfer between excited CsPbBr3 nanocrystals and TiO2: charge injection versus photodegradation. J Phys Chem Lett. 2018;9(20):5962–5969.
  • Hultqvist A, Aitola K, Sveinbjörnsson K, et al. Atomic layer deposition of electron selective SnOx and ZnO films on mixed halide perovskite: compatibility and performance. ACS Appl Mater Inter. 2017;9(35):29707–29716.
  • Yan S, Li Q, Zhang X, et al. A vertical structure photodetector based on all-inorganic perovskite quantum dots. J Soc Inf Display. 2019;28(1):9–15.
  • Zhou L, Yu K, Yang F, et al. All-inorganic perovskite quantum dot/mesoporous TiO2 composite-based photodetectors with enhanced performance. Dalton T. 2017;46(6):1766–1769.
  • Liu F, Zhang Y, Ding C, et al. Ultrafast electron injection from photoexcited perovskite CsPbI3 QDs into TiO2 nanoparticles with injection efficiency near 99. J Phys Chem Lett. 2018;9(2):294–297.
  • Zhang G, Liu G, Wang L, et al. Inorganic perovskite photocatalysts for solar energy utilization. Chem Soc Rev. 2016;45(21):5951–5984.
  • Zhou H, Ding L, Fan T, et al. Leaf-inspired hierarchical porous CdS/Au/N-TiO2 heterostructures for visible light photocatalytic hydrogen evolution. Appl Catal B-Environ. 2014;147:221–228.
  • He M, Pang X, Liu X, et al. Monodisperse dual-functional upconversion nanoparticles enabled near-infrared organolead halide perovskite solar cells. Angew Chem Int Edit. 2016;55(13):4280–4284.
  • Kazim S, Nazeeruddin MK, Grätzel M, et al. Perovskite as light harvester: a game changer in photovoltaics. Angewandte Chemie. 2014;53(11):2812–2824.
  • Hou J, Cao S, Wu Y, et al. Inorganic colloidal perovskite quantum dots for robust solar CO2 reduction. Chem Eur J. 2017;23(40):9481–9485.
  • Dotan H, Sivula K, Grätzel M, et al. Probing the photoelectrochemical properties of hematite (α-Fe2O3) electrodes using hydrogen peroxide as a hole scavenger. Energ Environ Sci. 2011;4(3):958–964.
  • Man O, Wenguang T, Shengming Y, et al. Amino-assisted anchoring of CsPbBr3 perovskite quantum dots on porous g-C3N4 for enhanced photocatalytic CO2 reduction. Angewandte Chemie. 2018;130(41):13758–13762.
  • Wu L-Y, Mu Y-F, Guo X-X, et al. Encapsulating perovskite quantum dots in iron-based metal–organic frameworks (MOFs) for efficient photocatalytic CO2 reduction. Angew Chem Int Edit. 2019;58(28):9491–9495.
  • Wan S, Ou M, Zhong Q, et al. Perovskite-type CsPbBr3 quantum dots/UiO-66(NH2) nanojunction as efficient visible-light-driven photocatalyst for CO2 reduction. Chem Eng J. 2019;358:1287–1295.
  • Sanehira EM, Marshall AR, Christians JA, et al. Enhanced mobility CsPbI3 quantum dot arrays for record-efficiency, high-voltage photovoltaic cells. Sci Adv. 2017;3(10):eaao4204.
  • Zhao X, Yan G, Sun Y, et al. Preparation of ethyl cellulose composite film with down conversion luminescence properties by doping perovskite quantum dots. ChemistrySelect. 2019;4(21):6516–6523.
  • Meinardi F, Akkerman QA, Bruni F, et al. Doped halide perovskite nanocrystals for reabsorption-free luminescent solar concentrators. ACS Energy Lett. 2017;2(10):2368–2377.
  • Benick J, Richter A, Muller R, et al. High-efficiency n-type HP mc silicon solar cells. IEEE J Photovolt. 2017;7(5):1171–1175.
  • Lee K-T, Guo JL, Park JH. Neutral- and multi-colored semitransparent perovskite solar cells. Molecules. 2016;21(4):475.
  • Mao J-Y, Zhou L, Zhu X, et al. Photonic memristor for future computing: a perspective. Adv Opt Mater. 2019;7(22):1900766.
  • An H, Kim WK, Wu C, et al. Highly-stable memristive devices based on poly(methylmethacrylate): CsPbCl3 perovskite quantum dot hybrid nanocomposites. Org Electron. 2018;56:41–45.
  • Wang K, Dai S, Zhao Y, et al. Light-stimulated synaptic transistors fabricated by a facile solution process based on inorganic perovskite quantum dots and organic semiconductors. Small. 2019;15(11):e1900010.
  • Wang Y, Lv Z, Liao Q, et al. Synergies of electrochemical metallization and valance change in all-inorganic perovskite quantum dots for resistive switching. Adv Mater. 2018;30(28):1800327.
  • Wang Y, Lv Z, Chen J, et al. Photonic synapses based on inorganic perovskite quantum dots for neuromorphic computing. Adv Mater. 2018;30(38):1802883.
  • Wu Y, Wei Y, Huang Y, et al. Capping CsPbBr3 with ZnO to improve performance and stability of perovskite memristors. Nano Res. 2017;10(5):1584–1594.
  • Wu H, Zhang W, Wu J, et al. A visual solar UV sensor based on paraffin-perovskite quantum dot composite film. ACS Appl Mater Interfaces. 2019;11(18):16713–16719.
  • Yu H, Lu Y, Feng Z, et al. A MAPbBr3: poly(ethyleneoxide) composite perovskite quantum dot emission layer: enhanced film stability, coverage and device performance. Nanoscale. 2019;11(18):9103–9114.