6,753
Views
58
CrossRef citations to date
0
Altmetric
Review Article

Intermetallic compounds in catalysis – a versatile class of materials meets interesting challenges

ORCID Icon
Pages 303-322 | Received 19 Feb 2020, Accepted 17 Apr 2020, Published online: 15 Jun 2020

References

  • Furukawa S, Komatsu T. Intermetallic Compounds: promising inorganic materials for well-structured and electronically modified reaction environments for efficient catalysis. ACS Catal. 2017;7:735–765.
  • Dasgupta A, Rioux RM. Intermetallics in catalysis: an exciting subset of multimetallic catalysts. CatalToday. 2019;330:2–15.
  • Marakatti VS, Peter SC. Synthetically tuned electronic and geometrical properties of intermetallic compounds as effective heterogeneous catalysts. Prog Solid State Chem. 2018;52:1–30.
  • Rößner L, Armbrüster M. Electrochemical energy conversion on intermetallic compounds – a review. ACS Catal. 2019;9:2018–2062.
  • Armbrüster M, Schlögl R, Grin Y. Intermetallic compounds in heterogeneous catalysis — a quickly developing field. Sci Technol Adv Mater. 2014;15:034803.
  • Cava RJ, Takagi H, Zandbergen HW, et al.. Superconductivity in the quarternary intermetallisc compounds LnNi2B2C. Nature. 1994;367:252–253.
  • Johansson B, Nordström L, Eriksson O, et al.. Magentism in the rare-earth metals and rare-earth intermetallic compounds. Phys Scr. 1991;T39:100–109.
  • Weber T, Dshemuchadse J, Kobas M, Conrad M, Harbrecht B, Steurer W. Larger, larger, largest - a family of cluster-based tantalum copper aluminides with giant unit cells. I. Structure solution and refinement.
  • Sharma HR, Shimoda M, Tsai AP. Quasicrystal surfaces: structure and growth of atomic overlayers. Adv Phys. 2007;56:403–464.
  • Pauling L. The Nature of the chemical bond and the structure of molecules and crystals. 3 ed. Ithaca: Cornell University Press; 1960.
  • Pauling L. X-ray crystallography and the nature of the chemical bond. In: Zewail A, editor. The chemical bond: structure and dynamics. San Diego: Academic Press Inc; 1992. p. 3–16.
  • Hume-Rothery W. Researches on the nature, properties, and conditions of formation of intermetallic compounds, with special reference to certain compounds of tin. J Inst Met. 1926;25:295–361.
  • Westgren AF, Phragmén G. Structure analogies of alloys. Ark Mat Astr Fys B. 1926;19:12.
  • Westgren AF, Phragmén G. Zur Chemie der metallischen Systeme. Z Metallk. 1926;18:279–284.
  • Westgren AF, Phragmén G. X-ray studies on alloys. Trans Faraday Soc. 1929;25:379–385.
  • Ekman W. Strukturanalogien der binären Legierungen von Übergangselementen mit Zn, Cd und Al. Z Phys Chem B. 1931;12:57–78.
  • Laves F. Kristallographie der Legierungen. Naturwissenschaften. 1939;27:65–73.
  • Laves F, Witte H. Der Einfluß von Valenzelektronen auf die Kristallstruktur ternärer Magnesiumlegierungen. Metallwirtschaft. 1936;15:840–842.
  • Zintl E, Harder A. Gitterstruktur von KBi2. Z Phys Chem B. 1932;16:206–212.
  • Zintl E. Salzartige Verbindungen des Natriums und ihr Übergang zu intermetallischen Phasen. Naturwissenschaften. 1929;17:782–783.
  • Zintl E, Brauer G. Über die Valenzelektronenregel und die Atomradien unedler Metalle in Legierungen. Z Phys Chem B. 1933;20:245–271.
  • Zintl E, Dullenkopf W. Über den Gitterbau von NaTl und seine Beziehung zu den Strukturen vom Typus des β-Messings. Z Phys Chem B. 1932;16:195–205.
  • Laves F. Eduard Zintls Arbeiten über die Chemie und Struktur von Legierungen. Naturwissenschaften. 1941;29:244–255.
  • Klemm W. Metalloids and their compounds with the alkali metals. Proceed Chem Soc London. 1958;329–341.
  • Klemm W, Busmann E. Volumeninkremente und Radien einiger einfach negativ geladener Ionen. Z Anorg Allg Chem. 1963;319:297–311.
  • Mooser E, Pearson WB. Chemical Bond in Semiconductors. Phys Rev. 1956;101:1608–1609.
  • Schäfer H, Eisenmann B, Müller W. Zintl-Phasen: Übergangsformen zwischen Metall- und Ionenbindung. Angew Chem. 1973;85:742–760.
  • Armbrüster M, Schnelle W, Cardoso-Gil R, et al.. Chemical bonding in compounds of the CuAl2 Family: mnSn2, FeSn2 and CoSn2. Chem A Eur J. 2010;16:10357–10365.
  • Kohlmann H. Metal hydrides. In: Encyclopedia of physical science and technology. 3rd ed. Vol. 9. San Diego, CA: Academic Press;2002. p. 441–458.
  • Armbrüster M, Kovnir K, Behrens M, et al.. Pd-Ga intermetallic compounds as highly selective semihydrogenation catalysts. J Am Chem Soc. 2010;132:14745–14747.
  • Alarcón Villaseca S, Kandaskalov D, Gaudry É, et al.. Chemical bonding in Zn–based intermetallic compounds with the CuTi or the CsCl type of structure. Z Anorg Allg Chem. 2014;640:753–759.
  • Imbihl R, Behm RJ, Schlögl R. Bridging the pressure and material gap in heterogeneous catalysis. Phys Chem Chem Phys. 2007;9:3459.
  • Raney M Method of preparing catalytic material. US 1563587, 1925.
  • Raney M Method of preparing catalytic material. CA 266469, 1926.
  • Matselko O, Zimmermann R, Ormeci A, et al.. Revealing electronic influences in the semihydrogenation of acetylene. J Phys Chem C. 2018;122:21891–21896.
  • Feng Q, Zhao S, Wang Y, et al.. Isolated single-atom Pd sites in intermetallic nanostructures: high catalytic selectivity for semihydrogen of alkynes. J Am Chem Soc. 2017;139:7294–7301.
  • Fiordaliso EM, Sharafutdinov I, Carvalho HWP, et al.. Intermetallic GaPd2 nanoparticles on SiO2 for Low-Pressure CO2 hydrogenation to methanol: catalytic performance and in situ characterization. ACS Catal. 2015;5:5827–5836.
  • Köpfle N, Mayr L, Schmidmair D, et al.. A comparative discussion of the catalytic activity and CO2-Selectivity of Cu-Zr and Pd-Zr (intermetallic) compounds in methanol steam reforming. Catalysts. 2017;7:53–69.
  • Seh ZW, Kibsgaard J, Dickens CF, et al.. Combining theory and experiment in electrocatalysis: insights into materials design. Science. 2017;355:eaad4998.
  • Cui C, Gan L, Li -H-H, et al.. Octahedral PtNi nanoparticle catalysts: exceptional oxygen reduction activity by tuning the alloy particle surface composition. Nano Lett. 2012;12:5885–5889.
  • Jaksic MM. Hypo-Hyper-d-electronic interactive nature of interionic synergism in catalysis and electrocatalysis for hydrogen reactions. Int J Hydrogen Energy. 2001;26:559–578.
  • Jaksic MM. Advances in electrocatalysis for hydrogen evolution in the light of the brewer-engel valence-bond theory. Int J Hydrogen Energy. 1987;12:727–752.
  • Yan Y, Du JS, Gilroy KD, et al.. Intermetallic nanocrystals: syntheses and catalytic applications. Adv Mater. 2017;29:1605997.
  • Emery VJ, Kivelson SA. Superconductivity in bad metals. Phys Rev Lett. 1995;74:3253–3256.
  • Raney M Process of Producing Nickel Catalysts. 1961.
  • Konenko IR, Starodubtseva EV, Urazbaeva KA, et al.. Catalytic properties of intermetallic compounds Ln(NiM)5 and their hydrides in hydrogenation reactions. Kinet Catal. 1988;29:858–861.
  • Imamura H, Wallace WE. Ethylene hydrogenation over catalysts formed by oxidation of intermetallic compounds. J Phys Chem. 1980;84:3145–3147.
  • Schwab E, Wicke E. Nitrogen absorption by the intermetallic compound TiFe and catalytic activity in ammonia synthesis. Z Phys Chem Neue Fol. 1980;122:217–224.
  • Penner S, Armbrüster M. Formation of intermetallic compounds by reactive metal-support interaction: a frequently encountered phenomenon in catalysis. ChemCatChem. 2015;7:374–392.
  • Taccardi N, Grabau M, Debuschewitz J, et al.. Gallium-rich Pd-Ga phases as supported liquid metal catalysts. Nat Chem. 2017;9:862–867.
  • Yao Y, Huang Z, Xie P, et al.. Carbothermal shock synthesis of high-entropy-alloy nanoparticles. Science. 2018;359:1489–1494.
  • Batchelor TAA, Pedersen JK, Winther SH, et al.. High-entropy alloys as a discovery platform for electrocatalysis. Joule. 2019;3:834–845.
  • Verbeek H, Sachtler WMH. The study of the alloys of platinum and Tin by chemisorption. J Catal. 1976;42:257–267.
  • Grin Y, Armbrüster M, Baranov AI, et al.. Atomic interactions in the intermetallic catalyst GaPd. Mol Phys. 2016;114:1250–1259.
  • Kovnir K, Osswald J, Armbrüster M, et al.. PdGa and Pd3Ga7: highly-selective catalysts for the acetylene partial hydrogenation. Stud Surf Sci Catal. 2006;162:481–488.
  • Kovnir K, Armbrüster M, Teschner D, et al.. A new approach to well-defined, stable and site-isolated catalysts. Sci Technol Adv Mater. 2007;8:420–427.
  • Osswald J, Kovnir K, Armbrüster M, et al.. Palladium gallium intermetallic compounds for the selective hydrogenation of acetylene. Part II: surface characterization and catalytic performance. J Catal. 2008;258:219–227.
  • Osswald J, Giedigkeit R, Jentoft RE, et al.. Palladium gallium intermetallic compounds for the selective hydrogenation of acetylene. Part I:preparation and structural investigation under reaction conditions. J Catal. 2008;258:210–218.
  • Armbrüster M, Kovnir K, Friedrich M, et al.. Al13Fe4 as a low-cost alternative for palladium in heterogeneous hydrogenation. Nat Mater. 2012;11:690–693.
  • Schwerin J, Müller D, Kiese S, et al.. Single crystal growth in the Ga–Pd system. J Crystal Growth. 2014;401:613–616.
  • Gille P, Bauer B, Hahne M, et al.. Single crystal growth of Al-based intermetallic phases being approximants to quasicrystals. J Crystal Growth. 2011;318:1016–1020.
  • Gille P, Bauer B. Single-crystal growth of Al13Co4 and Al13Fe4 from Al-rich solutions by the czochralski method. Cryst Res Technol. 2008;43:1161–1167.
  • Piccolo L, Kibis L. The partial hydrogenation of butadiene over Al13Fe4: a surface-science study of reaction and deactivation mechanisms. J Catal. 2015;332(112):118.
  • Piccolo L. Al13Fe4 selectively catalyzes the hydrogenation of butadiene at room temperature. Chem Comm. 2013;49:9149–9151.
  • Prinz J, Gaspari R, Pignedoli CA, et al.. Isolated Pd sites on the intermetallic PdGa(111) and PdGa(−1-1-1) model catalyst surfaces. Angew Chem. 2012;51:9339–9343.
  • Rosenthal D, Widmer R, Wagner R, et al.. Surface investigation of intermetallic PdGa(1.1.1.). Langmuir. 2012;28:6848–6856.
  • Piccolo L, Chatelier C, De Weerd M-C, et al.. Catalytic properties of Al13TM4 complex intermetallics: influence of the transition metal and the surface orientation on butadiene hydrogenation. Sci Technol Adv Mater. 2019;20:557–567.
  • Bechthold P, Ardenghi JS, Nagel H, et al.. Hydrogen adsorption on PdGa(100), (111) and (111) surfaces: A DFT Study. Int J Hydrogen Energy. 2014;39:2093–2103.
  • Alarcón Villaseca S, Levchenko S, Armbrüster M. CO Adsorption on the GaPd((111) ̅) surface: a comparative DFT study using different functionals. PCCP. 2016;18:14390–14400.
  • Alarcón Villaseca S, Ormeci A, Levchenko S, et al.. CO adsorption on GaPd – unravelling the chemical bonding in real space. ChemPhysChem. 2017;18:334–337.
  • Bechthold P, Sandoval M, González EA, et al.. The electronic structure and bonding of acetylene on PdGa(110). J Phys Chem C. 2015;119:18229–18238.
  • Shao L, Zhang W, Armbrüster M, et al.. Nanosizing intermetallic compounds onto carbon nanotubes: active and selective hydrogenation catalysts. Angew Chem. 2011;50:10231–10235.
  • Hodge KL, Goldberger JE. Transition metal-free alkyne hydrogenation catalysis with BaGa2, a hydrogen absorbing layered zintl phase. J Am Chem Soc. 2019;141:19969–19972.
  • Leary R, Saghi Z, Armbrüster M, et al.. Quantitative high-angle annular dark-field scanning transmission electron microscope (HAADF-STEM) tomography and high resolution electron microscopy of unsupported intermetallic GaPd2 Catalysts. J Phys Chem C. 2012;116:13343–13352.
  • Leary R, Saghi Z, Armbrüster M, et al.. Quantitative HAADF-STEM tomography of unsupported intermetallic Ga-Pd Catalysts. J Phys. 2012;371:012024.
  • Asinger F. Methanol: chemie- und Energierohstoff - Die Mobilisation der Kohle. Springer: Heidelberg; 1987.
  • Olah GA, Prakash GKS, Goeppert A. Anthropogenic chemical carbon cycle for a sustainable future. J Am Chem Soc. 2011;133:12881–12898.
  • Friedrich M, Penner S, Heggen M, et al.. High CO2 selectivity in methanol steam reforming through ZnPd/ZnO teamwork. Angew Chem. 2013;52:4389–4392.
  • Lorenz H, Friedrich M, Armbrüster M, et al.. ZnO is a CO2-selective steam reforming catalyst. J Catal. 2013;297:151–154.
  • Friedrich M, Teschner D, Knop-Gericke A, et al.. Influence of bulk composition of the intermetallic compound ZnPd on surface composition and methanol steam reforming properties. J Catal. 2012;285:41–47.
  • Armbrüster M, Behrens M, Föttinger K, et al.. The intermetallic compound ZnPd and its role in methanol steam reforming. Catal Rev Sci Eng. 2013;55:289–367.
  • Chiang T-H, Ipser H, Chang YA. Thermodynamic properties of palladium-zink alloys. Z Metallk. 1977;68:141–147.
  • Chiang T-H, Ipser H, Chang YA. Thermodynamic properties of palladium-zink alloys - eratum. Z Metallk. 1977;68:509.
  • Mayr L, Klötzer B, Zemlyanov D, et al.. Steering of methanol reforming selectivity by zirconia-copper interaction. J Catal. 2015;312:123–132.
  • Mayr L, Shi X, Köpfle N, et al.. Tuning of the copper-zirconia phase boundary for selectivity control of methanol conversion. J Catal. 2016;339:111–122.
  • Kojima T, Kameoka S, Tsai A-P. The emergence of Heusler alloy catalysts. Sci Technol Adv Mater. 2019;20:445–455.
  • Komatsu T, Furukawa S. Intermetallic compound nanoparticles dispersed on the surface of oxide support as active and selective catalysts. Mater Trans. 2015;56:460–467.
  • Aktiengesellschaft S Electrochemical Cell. GB 1559700A, 1980.
  • Xiao W, Lei W, Gong M, et al.. Recent advances of structurally ordered intermetallic nanoparticles for electrocatalysis. ACS Catal. 2018;8:3237–3256.
  • Li J, Sun S. Intermetallic nanoparticles: synthetic control and their enhanced electrocatalysis. Acc Chem Res. 2019;52:2015–2025.
  • Casado-Rivera E, Volpe DJ, Alden L, et al.. Electrocatalytic activity of ordered intermetallic phases for fuel cell applications. J Am Chem Soc. 2004;126:4043–4049.
  • Bu L, Zhang N, Guo S, et al.. Biaxially strained PtPb/Pt coreshell nanoplate boosts oxygen reduction catalysis. Science. 2016;354:1410–1414.
  • Matsumoto F, Roychowdhury C, DiSalvo FJ, et al.. Electrocatalytic activity of ordered intermetallic PtPb nanoparticles prepared by borohydride reduction toward formic acid oxidation. J Electrochem Soc. 2008;155:B148–B154.
  • Alden LR, Han DK, Matsumoto F, et al.. Intermetallic PtPb nanoparticles prepared by sodium naphthalide reduction of metal-organic precursors: electrocatalytic oxidation of formic acid. Chem Mater. 2006;18:5591–5596.
  • Sun Y, Liang Y, Luo M, et al.. Defects and interfaces on PtPb nanoplates boost fuel cell electrocatalysis. Small. 2018;14:1702259.
  • Strasser P, Koh S, Greeley J. Voltammetric surface dealloying of pt bimetallic nanoparticles: an experimental and DFT computational analysis. Phys Chem Chem Phys. 2008;10:3670–3683.
  • Gamler JTL, Leonardi A, Ashberry HM, et al.. Achieving highly durable random alloy nanocatalysts through intermetallic cores. ACS Nano. 2019;13:4008–4017.
  • Antolini E. Alloy vs. Intermetallic compounds: effect of the ordering on the electrocatalytic activity for oxygen reduction and the stability of low temperature fuel cell catalysts. Appl Catal B. 2017;217:201–213.
  • Antolini E, Salgado JRC, Onzalez ER. The stability of Pt-M (M = First Row Transition Metal)alloy catalysts and its effect on the activity in low temperature fuel cells: a literature review and tests on a Pt-Co catalyst. J Power Sources. 2006;160:957–968.
  • Sun D, Wang Y, Livi KJT, et al.. Ordered intermetallic Pd3Bi prepared by an electrochemically induced phase transformation for oxygen reduction electrocatalysis. ACS Nano. 2019;13:10818–10825.
  • Menezes PW, Walter C, Hausmann JN, et al.. Boosting water oxidation through in situ electroconversion of manganese gallide: an intermetallic precursor approach. Angew Chem. 2019;58:16569–16574.
  • Tsai AP, Yoshimura T. Highly active quasicrystalline Al-Cu-Fe catalyst for steam reforming of methanol. Appl Catal A. 2001;214:237–241.
  • Mayr L, Klötzer B, Schmidmair D, et al.. Boosting hydrogen production from methanol and water by in situ activation of bimetallic Cu−Zr Species. ChemCatChem. 2016;8(10):1778–1781.
  • Takeshita T, Wallace WE, Craig RS. Rare earth intermetallics as synthetic ammonia catalysts. J Catal. 1976;44:236–243.
  • Wallace WE, France J, Shamsi A. Catalysis using rare earth and actinide intermetallics containing Fe, Co, Ni and Cu. Vol. 3. New York: Plenum Press; 1982. p. 561–568.
  • Nix RM, Rayment T, Lambert RM, et al.. An in Situ X-Ray diffraction study of the activation and performance of methanol synthesis catalysts derived from rare-earth-copper alloys. J Catal. 1987;106:216–234.
  • Stöwe K, Armbrüster M. Rare earth metals in heterogeneous catalysis – an overview. In: Pöttgen R, Jüstel T, Strassert CA, editors. Rare earth chemistry – basics for master and PhD students. Berlin/Boston: De Gruyter; 2020. p. 469–491.
  • Luo Y, Sun Y, Schwarz U, et al.. Systematic exploration of synthesis pathways to nanoparticulate ZnPd. Chem Mater. 2012;24:3094–3100.
  • Armbrüster M, Wowsnick G, Friedrich M, et al.. Synthesis and catalytic properties of nanoparticulate intermetallic GaPd Compounds. J Am Chem Soc. 2011;133:9112–9118.
  • Studt F, Sharafutdinov I, Abild-Pedersen F, et al.. Discovery of a Ni-Ga catalyst for carbon dioxide reduction to methanol. Nat Chem. 2014;6:320–324.
  • Sharafutdinov I, Elkjær CF, Pereira de Carvalho HW, et al.. Intermetallic Compounds of Ni and Ga as catalysts for the synthesis of methanol. J Catal. 2014;320:77–88.
  • Fiordaliso EM, Sharafutdinov I, Carvalho HWP, et al.. Evolution of Intermetallic GaPd2/SiO2 catalyst and optimization for methanol synthesis at ambient pressure. Sci Technol Adv Mater. 2019;20:521–531.
  • Iwasa N, Suzuki H, Terashita M, et al.. Methanol synthesis from CO2 under atmospheric pressure over supported Pd Catalysts. Catal Lett. 2004;96:75–78.
  • Olah GA. Towards Oil Independence Through Renewable Methanol Chemistry. Angew Chem. 2013;52:104–107.
  • Wang A, Li J, Zhang T. Heterogeneous single-atom catalysis. Nat Rev Chem. 2018;2:65–81.
  • Krajcí M, Hafner J. Semihydrogenation of Acetylene on the (010) Surface of GaPd2: ga enrichment improves selectivity. J Phys Chem C. 2014;118:12285–12301.
  • Childers DJ, Schweitzer NM, Shahari SMK, et al.. Modifying structure-sensitive reactions by addition of Zn to Pd. J Catal. 2014;318:75–84.
  • Sarkar S, Balisetty L, Shanbogh PP, et al.. Effect of ordered and disordered phases of unsupported Ag3In nanoparticles on the catalytic reduction of p-Nitrophenol. J Catal. 2014;318:143–150.
  • Furukawa N, Yoshida Y, Komatsu T. Chemoselective hydrogenation of nitrostyrene to aminostyrene over Pd- and Rh-based intermetallic compounds. ACS Catal. 2014;4:1441–1450.
  • Friedrich M, Alarçon Villaseca S, Szentmiklósi L, et al.. Order-induced selectivity increase of Cu60Pd40 in the semi-hydrogenation of acetylene. Materials. 2013;6:2958–2977.
  • Antonyshyn I, Sichevych O, Rasim K, et al.. Chemical behaviour of CaAg 2 under ethylene epoxidation conditions. Eur J Inorg Chem. 2018;2018:3933–3941.
  • Antonyshyn I, Sichevych O, Rasim K, et al.. Anisotropic reactivity of CaAg under ethylene epoxidation conditions. In: Inorganic chemistry. 2018. p. 10821–10831.
  • Antonyshyn I, Sichevych O, Ormeci A, et al.. Ca-Ag compounds in ethylene epoxidation reaction. Sci Technol Adv Mater. 2019;20:902–916.
  • Kitano M, Inoue Y, Yamazaki Y, et al.. Ammonia synthesis using a stable electride as an electron donor and reversible hydrogen store. Nat Chem. 2012;4:934–940.
  • Lu Y, Li J, Tada T, et al.. Water durable electride Y5Si3: electronic structure and catalytic activity for ammonia synthesis. J Am Chem Soc. 2016;138:3970–3973.
  • Gong Y, Wu J, Kitano M, et al.. Ternary intermetallic LaCoSi as a Catalyst for N2 activation. Nat Catal. 2018;1(3):178–185.
  • Binnewies M, Glaum R, Schmidt M, et al.. Chemical vapor transport reactions. Berlin/Boston: De Gruyter; 2016.
  • Ivarsson DCA, Burkhardt U, Richter KW, et al.. Simple vapor-solid synthesis of Zn-based intermetallic compounds. J Alloys Compd. 2018;743:155–162.
  • Ipser H. Vapor Pressure methods: a source of experimental thermodynamic data. Berichte der Bunsengesellschaft für Physikalische Chemie. 1998;102:1217–1224.
  • Henschel A, Binnewies M, Schmidt M, et al.. Crucible-free preparation of transition-metal borides: hfB 2. Chem A Eur J. 2017;23:15869–15873.
  • Zerdoumi R, Rößner L, Armbrüster M. Addressing the stability of bulk electrode materials in the electrochemical methanol oxidation. J Electrochem Soc. 2019;166:F1079–F1087.
  • Kriegel R, Armbrüster M. Corrosion-Free EMF Measurements of zinc-based intermetallic compounds at ambient temperature. ChemPhysChem. 2020. DOI:https://doi.org/10.1002/cphc.201901218
  • Miura A, Wang H, Leonard BM, et al.. Synthesis of intermetallic PtZn nanoparticles by reaction of Pt Nanoparticles with Zn vapor and their application as fuel cell catalysts. Chem Mater. 2009;21:2661–2667.
  • Ren Z, Xiao L, Wang G, et al.. Intermetallic Pt2Si: magnetron-sputtering preparation and electrocatalysis toward ethanol oxidation. J Energy Chem. 2014;23:265–268.
  • Dittmeyer R, Siebert M, Zimmermann R, et al.. Process for producing a single-phase layer of intermetallic compounds. German Patent application DE 102017116972 A1. 2017.
  • Rameshan C, Weilach C, Stadlmayr W, et al.. Steam reforming of methanol on PdZn near-surface alloys on Pd(111) and Pd Foil Studied by In-Situ XPS, LEIS and PM-IRAS. J Catal. 2010;276:101–113.
  • Mayr L, Lorenz H, Armbrüster M, et al.. The catalytic properties of thin film pd-rich GaPd2 in methanol steam reforming. J Catal. 2014;309:231–240.
  • Jin J, Prochaska M, Rochefort D, et al.. A high-throughput search for direct methanol fuel cell anode electrocatalysts of type PtxBiyPbz. Appl Surf Sci. 2007;254:653–661.
  • Rameshan C, Stadlmayr W, Penner S, et al.. In Situ XPS study of methanol reforming on PdGa near-surface intermetallic phases. J Catal. 2012;290:126–137.
  • Drnec J, Bizzotto D, Carlà F, et al.. An in-situ X-ray diffraction study on the electrochemical formation of PtZn Alloys on Pt(1 1 1) single crystal electrode. Appl Surf Sci. 2015;354:443–449.
  • Bauer B, Gille P. Crystal growth of Al-rich complex metallic phases in the system Al-Cr-Fe using the czochralski method. Z Anorg Allg Chem. 2011;637:2052–2056.
  • Canfield PC, Fisk Z, Growth of single crystals from metallic fluxes. Philisophical Magazine B 1992, 65, 1117–11123.
  • Boström M, Hovmöller S. Preparation and crystal structure of the novel decagonal approximant Mn123Ga137. J Alloys Compd. 2001;314:154–159.
  • Hong Y, Kim HJ, Yang D, et al.. Facile synthesis of fully ordered L10-FePt nanoparticles with controlled Pt-shell Thicknesses for electrocatalysis. Nano Res. 2017;10(8):2866–2880.
  • Dasgupta A, Zimmerer EK, Meyer RJ, et al.. Generalized approach for the synthesis of silica supported Pd-Zn, Cu-Zn and Ni-Zn gamma brass phase nanoparticles. CatalToday. 2019;334:231–242.
  • Schmidt M, Kovnir K, Deichsel J, et al.. Fest/Gas-Reaktion zur Darstellung von geträgerten intermetallischen Ga-Pd Katalysatormaterialien. Z Anorg Allg Chem. 2015;641:1061–1068.
  • Komatsu T, Inaba K, Uezono T, et al.. Nano-size particles of palladium intermetallic compounds as catalysts for oxidative acetoxylation. Appl Catal A. 2003;251:315–326.
  • Komatsu T, Kishi T, Gorai T. Preparation and catalytic properties of uniform particles of Ni3Ge intermetallic compound formed inside the mesopores of MCM-41. J Catal. 2008;259:174–182.
  • Onda A, Komatsu T, Yashima T. Preparation and catalytic properties of single phase Ni-Sn intermetallic compound particles by CVD of Sn(CH3)4 onto Ni/Silica. Chem Comm. 1998;1507–1508. DOI:https://doi.org/10.1039/a803071e
  • Chen X, Jin J, Sha G, et al.. Silicon–nickel intermetallic compounds supported on silica as a highly efficient catalyst for CO Methanation. Catal Sci Technol. 2014;4:53–61.
  • Johnson RW, Hultqvist A, Bent SF. A brief review of atomic layer deposition: from fundamentals to applications. Mater Today. 2014;17:236–246.
  • Espejo AP, Zierold R, Gooth J, et al.. Magnetic and electrical characterization of nickel-rich NiFe thin films synthesized by atomic layer deposition and subsequent thermal reduction. Nanotechnology. 2016;27:345707.
  • Gorey TJ, Zandkarimi B, Li G, et al.. Preparation of size- and composition-controlled PtnSnx/SiO2 (n = 4, 7, 24) bimetallic model catalysts with atomic layer deposition. J Phys Chem C. 2019;123:16194–16209.
  • Ramachandran RK, Dendooven J, Filez M, et al.. Atomic layer deposition route to tailor nanoalloys of noble and non-noble metals. ACS Nano. 2016;10:8770–8777.
  • Ramachandran RK, Filez M, Dendooven J, et al.. Size- and Composition-controlled Pt–Sn bimetallic nanoparticles prepared by atomic layer deposition. RSC Adv. 2017;7:20201–20205.
  • Väyrynen K, Hatanpää T, Mattinen M, et al.. Atomic layer deposition of intermetallic Co3Sn2 and Ni3Sn2 Thin films. Adv Mater Interfaces. 2019;6:1801291.