3,011
Views
8
CrossRef citations to date
0
Altmetric
Energy Materials

Determining phase transitions of layered oxides via electrochemical and crystallographic analysis

, &
Pages 653-660 | Received 06 Feb 2020, Accepted 20 Aug 2020, Published online: 15 Sep 2020

References

  • Zubi G, Dufo-López R, Carvalho M, et al. The lithium-ion battery: state of the art and future perspectives. Renewable Sustainable Energy Rev. 2018;89:(March):292–308.
  • Fröhlich K, Legotin E, Bärhold F, et al. New large-scale production route for synthesis of lithium nickel manganese cobalt oxide. J Solid State Electrochem. 2017;21(12):3403–3410.
  • Ceder G. Van Der Ven A. Phase diagrams of lithium transition metal oxides: investigations from first principles. Electrochim Acta. 1999;45(1):131–150.
  • Ohzuku T, Makimura Y. Layered lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for lithium-ion batteries. Chem Lett. 2001;7(7):642–643.
  • Xu H, Ye X, Xiao C, et al. Synthesis and electrochemical performance of Mg-Doped Li(Ni 1/3 Co 1/3 Mn 1/3) 1–x Mg x O 2 cathode material for lithium-ion battery. Synth React Inorganic Met Nano-Metal Chem. 2015 Feb;45(2):234–237.
  • Li Y, Li Y, Zhong S, et al. Synthesis and electrochemical properties of Y-Doped LiNi1/3Mn1/3Co1/3O2 cathode materials for li-ion battery. Integr Ferroelectr. 2011;127(1):150–156.
  • Wang Y, Zhang W, Chen L, et al. Quantitative description on structure–property relationships of Li-ion battery materials for high-throughput computations. Sci Technol Adv Mater. 2017;18(1):134–146.
  • Jehnichen P, Wedlich K, Korte C Degradation of high-voltage cathodes for advanced lithium-ion batteries – differential capacity study on differently balanced cells. 2018
  • Erickson EM, Schipper F, Penki TR, et al. Review—recent advances and remaining challenges for lithium ion battery cathodes. J Electrochem Soc. 2017;164(1):A6341–8.
  • Miao S, Kocher M, Rez P, et al. Local electronic structure of layered LixNi0.5Mn0.5O2 and LixNi1/3Mn1/3Co1/3O2. J Phys Chem B. 2005;109(49):23473–23479.
  • Mao Y, Wang X, Xia S, et al. High-voltage charging-induced strain, heterogeneity, and micro-cracks in secondary particles of a nickel-rich layered cathode material. Adv Funct Mater. 2019 May 1;29(18):1900247.
  • Jung R, Metzger M, Maglia F, et al. Oxygen release and its effect on the cycling stability of LiNixMnyCozO2 (NMC) cathode materials for li-ion batteries. J Electrochem Soc. 2017;164(7):A1361–77.
  • Hwang BJ, Tsai YW, Carlier D, et al. A Combined Computational/Experimental Study on LiNi1/3Co1/3Mn1/3O2. Chem Mater. 2003;15(19):3676–3682.
  • Radin MD, Hy S, Sina M, et al. Narrowing the gap between theoretical and practical capacities in Li-ion layered oxide cathode materials. Adv Energy Mater. 2017;7(20):1–33.
  • Peng L, Zhu Y, Khakoo U, et al. Self-assembled LiNi1/3Co1/3Mn1/3O2 nanosheet cathodes with tunable rate capability. Nano Energy. 2015;17:36–42.
  • Gao P, Yang G, Liu H, et al. Lithium diffusion behavior and improved high rate capacity of LiNi1/3Co1/3Mn1/3O2 as cathode material for lithium batteries. Solid State Ion. 2012;207:50–56.
  • Shaju KM, Subba Rao GV, Chowdari BVR. EIS and GITT studies on oxide cathodes, O2-Li(2/3)+x(Co0.15Mn0.85)O2 (x = 0 and 1/3). Electrochim Acta. 2003;48(18):2691–2703.
  • Shafiei Sabet P, Sauer DU. Separation of predominant processes in electrochemical impedance spectra of lithium-ion batteries with nickel-manganese-cobalt cathodes. J Power Sources. 2019;425:121–129.
  • Wang Q, Tian N, Xu K, et al. A facile method of improving the high rate cycling performance of LiNi1/3Co1/3Mn1/3O2 cathode material. J Alloys Compd. 2016;686:267–272.
  • Ivanishchev AV, Bobrikov IA, Ivanishcheva IA, et al. Study of structural and electrochemical characteristics of LiNi0.33Mn0.33Co0.33O2 electrode at lithium content variation. J Electroanal Chem. 2018;821:140–151.
  • Shaju KM, Subba Rao GV, Chowdari BVR. Influence of Li-ion kinetics in the cathodic performance of layered Li(Ni1/3Co1/3Mn1/3)O2. J Electrochem Soc. 2004;151(9):A1324.
  • Genieser R, Ferrari S, Loveridge M, et al. Lithium ion batteries (NMC/graphite) cycling at 80 °C: different electrolytes and related degradation mechanism. J Power Sources. 2018;373:172–183.
  • Jiang K-C, Xin S, Lee J-S, et al. Improved kinetics of LiNi1/3Mn1/3Co1/3O2 cathode material through reduced graphene oxide networks. Phys Chem Chem Phys. 2012;14(8):2934–2939.
  • Bobrikov IA, Samoylova NY, Sumnikov SV, et al. In-situ time-of-flight neutron diffraction study of the structure evolution of electrode materials in a commercial battery with LiNi0.8Co0.15Al0.05O2 cathode. J Power Sources. 2017;372:74–81.
  • Dolotko O, Senyshyn A, Mühlbauer MJ, et al. Understanding structural changes in NMC Li-ion cells by in situ neutron diffraction. J Power Sources. 2014;255:197–203.
  • Lu Z, Dahn JR. Understanding the anomalous capacity of Li/Li[NixLi (1/3−2x/3)Mn2/3−x/3O2 cells using in situ X-Ray diffraction and electrochemical studies. J Electrochem Soc. 2002;149(7):A815.
  • Mohanty D, Kalnaus S, Meisner RA, et al. Structural transformation of a lithium-rich Li1.2Co0.1Mn0.55Ni0.15O2 cathode during high voltage cycling resolved by in situ X-ray diffraction. J Power Sources. 2013;229:239–248.
  • Tsai YW, Hwang BJ, Ceder G, et al. In-Situ x-ray absorption spectroscopic study on variation of electronic transitions and local structure of LiNi1/3Co1/3Mn1/3O2 cathode material during electrochemical cycling. Chem Mater. 2005 Jun 1;17(12):3191–3199.
  • Buchberger I, Seidlmayer S, Pokharel A, et al. Aging analysis of graphite/LiNi1/3Mn1/3Co1/3O2 cells using XRD, PGAA, and AC impedance. J Electrochem Soc. 2015;162(14):A2737–46.
  • Zhang L, Wang X, Noguchi H, et al. Electrochemical and ex situ XRD investigations on (1−x)LiNiO2·xLi2TiO3 (0.05≤x≤0.5). Electrochim Acta. 2004;49(20):3305–3311.
  • Kong D, Zhang M, Xiao Y, et al. Insights into the structural evolution and Li/O loss in high-Ni layered oxide cathodes. Nano Energy. 2019;59:327–335.
  • Weppner W, Huggins RA. Determination of the kinetic parameters of mixed-conducting electrodes and application to the system Li3Sb. J Electrochem Soc. 1977;124(10):1569.
  • Larson AC, Von Dreele RB. Report No. LAUR 86-748. Program GSAS for Windows. Version 15-04-04. Los Alamos National Laboratory, New Mexico, USA; 1987.
  • Toby BH. EXPGUI, a graphical user interface for GSAS. J Appl Crystallogr. 2001 Apr;34(2):210–213.
  • Yin S-C, Rho Y-H, Swainson I, et al. X-ray/neutron diffraction and electrochemical studies of lithium Li1-xCo1/3Ni1/3Mn1/3O2 (x=0->1). Chem Mater. 2006;18(7):1901–1910.
  • Paulsen JM, Larcher D, Dahn JR. O2 structure Li2/3[Ni1/3Mn2/3]O2: a new layered cathode material for rechargeable lithium batteries III. Ion Exchange. J Electrochem Soc. 2000;147(8):2862.
  • Babu B, Shaijumon MM. Studies on kinetics and diffusion characteristics of lithium ions in TiNb2O7. Electrochim Acta. 2020;345:136208.
  • Montoro LA, Rosolen JM. The role of structural and electronic alterations on the lithium diffusion in LixCo0.5Ni0.5O2. Electrochim Acta. 2004;49(19):3243–3249.
  • Yabuuchi N, Ohzuku T. Novel lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for advanced lithium-ion batteries. J Power Sources. 2003 Jun 1;119-121:171–174
  • Shimoda K, Oishi M, Matsunaga T, et al. Direct observation of layered-to-spinel phase transformation in Li2MnO3 and the spinel structure stabilised after the activation process. J Mater Chem A. 2017;5(14):6695–6707.
  • Qian K, Li Y, He Y-B, et al. Abuse tolerance behavior of layered oxide-based Li-ion battery during overcharge and over-discharge. RSC Adv. 2016;6(80):76897–76904.
  • Xia D, Zheng J, Wang C, et al. Designing principle for Ni-rich cathode materials with high energy density for practical applications. Nano Energy. 2018 Apr 1;49:434–452.
  • Belharouak I, Sun Y-K, Liu J, et al. Li(Ni1/3Co1/3Mn1/3)O2 as a suitable cathode for high power applications. J Power Sources. 2003;123(2):247–252.
  • Arroyo Y de Dompablo ME, Ceder G. On the origin of the monoclinic distortion in LixNiO2. Chem Mater. 2003 Jan 1;15(1):63–67.
  • Yoon W, Chung K, McBreen J, et al. Study on structural changes of LiCo1/3Ni1/3Mn1/3O2 and LiNi0.8Co0.15Al0.05O2 during first charge using in situ XRD. 2006.
  • Shannon RD. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr Sect A. 1976 Sep 1;32(5):751–767.
  • Labrini M, Saadoune I, Almaggoussi A, et al. The LiyNi0.2Mn0.2Co0.6O2 electrode materials: a structural and magnetic study. Mater Res Bull. 2012 Apr 1;47:1004–1009.
  • Choi J, Manthiram A. Comparison of the electrochemical behaviors of stoichiometric LiNi1/3Co1/3Mn1/3O2 and lithium excess Li 1.03(Ni1/3Co1/3Mn1/3)0.97O2. Electrochem Solid-State Lett. 2004;7(10):A365.
  • Li W, Reimers JN, Dahn JR. In situ x-ray diffraction and electrochemical studies of Li1-xNiO2. Solid State Ion. 1993;67(1–2):123–130.
  • Gabrisch H, Yazami R, Fultz B. Hexagonal to Cubic spinel transformation in lithiated cobalt oxide. J Electrochem Soc. 2004;151(6):A891.
  • Reimers J, Dahn J. Electrochemical and in situ X-Ray diffraction studies of lithium intercalation in LixCoO2. J Electrochem Soc. 1992 Aug 1;139:2091–2097
  • Liu Z, Yu A, Lee JY. Synthesis and characterization of LiNi1−x−yCoxMnyO2 as the cathode materials of secondary lithium batteries. J Power Sources. 1999;81–82:416–419.
  • Arai H, Okada S, Ohtsuka H, et al. Characterization and cathode performance of Li1−xNi1+xO2 prepared with the excess lithium method. Solid State Ion. 1995;80(3):261–269.
  • Kalyani P, Kalaiselvi N. Various aspects of LiNiO2 chemistry: a review. Sci Technol Adv Mater. 2005;6(6):689–703.