6,280
Views
8
CrossRef citations to date
0
Altmetric
Optical, magnetic and electronic device materials

Simultaneous harvesting of radiative cooling and solar heating for transverse thermoelectric generation

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 441-448 | Received 06 Jan 2021, Accepted 19 Apr 2021, Published online: 29 Jun 2021

References

  • Uchida K, Takahashi S, Harii K, et al. Observation of the spin Seebeck effect. Nature. 2008;455(7214):778–781.
  • Uchida K, Xiao J, Adachi H, et al. Spin Seebeck insulator. Nat Mater. 2010;9(11):894–897.
  • Jaworski CM, Yang J, Mack S, et al. Observation of the spin-Seebeck effect in a ferromagnetic semiconductor. Nat Mater. 2010;9(11):898–903.
  • Uchida K, Adachi H, Ota T, et al. Observation of longitudinal spin-Seebeck effect in magnetic insulators. Appl Phys Lett. 2010;97(17):172505.
  • Kirihara A, Uchida K, Kajiwara Y, et al. Spin-current-driven thermoelectric coating. Nat Mater. 2012;11(8):686–689.
  • Kirihara A, Kondo K, Ishida M, et al. Flexible heat-flow sensing sheets based on the longitudinal spin Seebeck effect using one-dimensional spin-current conducting films. Sci Rep. 2016;6(1):23114.
  • Uchida K, Adachi H, Kikkawa T, et al. Thermoelectric generation based on spin Seebeck effects. Proc IEEE. 2016;104:1499.
  • Weiler M, Althammer M, Czeschka FD, et al. Local charge and spin Currents in magnetothermal landscapes. Phys Rev Lett. 2012;108(10):106602.
  • Agrawal M, Vasyuchka VI, Serga AA, et al. Role of bulk-magnon transport in the temporal evolution of the longitudinal spin-Seebeck effect. Phys Rev B. 2014;89(22):224414.
  • Ishii S, Uchida K, Dao TD, et al. Wavelength-selective spin-current generator using infrared plasmonic metamaterials. APL Photonics. 2017;2(10):106103.
  • Telkes M. Solar thermoelectric generators. J Appl Phys. 1954;25(6):765–777.
  • Hasebe M, Kamikawa Y, Meiarashi S, editors. Thermoelectric generators using solar thermal energy in heated road pavement. 2006 25th International Conference on Thermoelectrics; 2002 Aug 6–10; Vienna, Austria.
  • Kraemer D, Poudel B, Feng H-P, et al. High-performance flat-panel solar thermoelectric generators with high thermal concentration. Nat Mater. 2011;10(7):532–538.
  • Yang D, Yin H. Energy conversion efficiency of a novel hybrid solar system for photovoltaic, thermoelectric, and heat utilization. IEEE Trans Energy Convers. 2011;26(2):662–670.
  • Huen P, Daoud WA. Advances in hybrid solar photovoltaic and thermoelectric generators. Renew Sust Energ Rev. 2017;72:1295–1302.
  • Yamada A, inventorThermoelectric conversion system (Japanese patent). Japan patent JPB 002716861. 1997.
  • Raman AP, Li W, Fan S. Generating light from darkness. Joule. 2019;3:1–8.
  • Catalanotti S, Cuomo V, Piro G, et al. The radiative cooling of selective surfaces. Sol Energy. 1975;17(2):83–89.
  • Nilsson TMJ, Niklasson GA, Granqvist CG. A solar reflecting material for radiative cooling applications: ZnS pigmented polyethylene. Sol Energy Mater Sol Cells. 1992;28(2):175–193.
  • Raman AP, Anoma MA, Zhu L, et al. Passive radiative cooling below ambient air temperature under direct sunlight. Nature. 2014;515:540.
  • Sun X, Sun Y, Zhou Z, et al. Radiative sky cooling: fundamental physics, materials, structures, and applications. Nanophotonics. 2017;6(5):997–1015.
  • Zeyghami M, Goswami DY, Stefanakos E. A review of clear sky radiative cooling developments and applications in renewable power systems and passive building cooling. Sol Energy Mater Sol Cells. 2018;178:115–128.
  • Zhao D, Aili A, Zhai Y, et al. Radiative sky cooling: fundamental principles, materials, and applications. Appl Phys Rev. 2019;6(2):021306.
  • Hsu P-C, Song AY, Catrysse PB, et al. Radiative human body cooling by nanoporous polyethylene textile. Science. 2016;353(6303):1019–1023.
  • Kou J, Jurado Z, Chen Z, et al. Daytime radiative cooling using near-black infrared emitters. ACS Photonics. 2017;4(3):626–630.
  • Zhai Y, Ma Y, David SN, et al. Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling. Science. 2017;355(6329):1062–1066.
  • Mandal J, Fu Y, Overvig AC, et al. Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling. Science. 2018;362(6412):315–319.
  • Bhatia B, Leroy A, Shen Y, et al. Passive directional sub-ambient daytime radiative cooling. Nat Commun. 2018;9(1):5001.
  • Leroy A, Bhatia B, Kelsall CC, et al. High-performance subambient radiative cooling enabled by optically selective and thermally insulating polyethylene aerogel. Sci Adv. 2019;5(10):eaat9480.
  • Li T, Zhai Y, He S, et al. A radiative cooling structural material. Science. 2019;364(6442):760–763.
  • Luo H, Li Q, Du K, et al. An ultra-thin colored textile with simultaneous solar and passive heating abilities. Nano Energy. 2019;65:103998.
  • Heo S-Y, Lee GJ, Kim DH, et al. A Janus emitter for passive heat release from enclosures. Sci Adv. 2020;6(36):eabb1906.
  • Azevedo A, Leão LHV, Rodriguez-Suarez RL, et al. dc effect in ferromagnetic resonance: evidence of the spin-pumping effect? J Appl Phys. 2005;97(10):10C715.
  • Saitoh E, Ueda M, Miyajima H, et al. Conversion of spin current into charge current at room temperature: inverse spin-Hall effect. Appl Phys Lett. 2006;88(18):182509.
  • Valenzuela SO, Tinkham M. Direct electronic measurement of the spin Hall effect. Nature. 2006;442(7099):176–179.
  • Wood DL, Nassau K. Optical properties of gadolinium gallium garnet. Appl Opt. 1990;29(25):3704–3707.
  • Rakić AD, Djurišić AB, Elazar JM, et al. Optical properties of metallic films for vertical-cavity optoelectronic devices. Appl Opt. 1998;37(22):5271–5283.
  • Lee W-L, Watauchi S, Miller VL, et al. Anomalous Hall heat current and Nernst effect in the CuCr2Se4−xBrx ferromagnet. Phys Rev Lett. 2004;93(22):226601.
  • Miyasato T, Abe N, Fujii T, et al. Crossover behavior of the anomalous Hall effect and anomalous Nernst effect in itinerant ferromagnets. Phys Rev Lett. 2007;99(8):086602.
  • Sakuraba Y. Potential of thermoelectric power generation using anomalous Nernst effect in magnetic materials. Scr Mater. 2016;111:29–32.
  • Uchida K, Zhou W, Sakuraba Y. Transverse thermoelectric generation using magnetic materials. Appl Phys Lett. 2021;118(14):140504.