3,720
Views
7
CrossRef citations to date
0
Altmetric
Focus on Thermoelectric Materials

Enhanced thermoelectric performance in polymorphic heavily Co-doped Cu2SnS3 through carrier compensation by Sb substitution

, , , , ORCID Icon, , , & show all
Pages 363-372 | Received 22 Feb 2021, Accepted 20 Apr 2021, Published online: 28 May 2021

References

  • Bell LE. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science. 2008 Sep;321(5895):1457–1461.
  • Pei YZ, Wang H, Snyder GJ. Band engineering of thermoelectric materials. Adv Mater. 2012 Dec;24(46):6125–6135.
  • Yang RG, Chen G, Kumar AR, et al. Transient cooling of thermoelectric coolers and its applications for microdevices. Energ Convers Manage. 2005 Jun;46(9–10):1407–1421.
  • DiSalvo FJ. Thermoelectric cooling and power generation. Science. 1999 Jul;285(5428):703–706.
  • Tritt TM, Subramanian MA. Thermoelectric materials, phenomena, and applications: a bird’s eye view. MRS Bul. 2006 Mar; 31(3):188–194.
  • Search HCA, Iopscience M. Materials for thermoelectric energy conversion. Rep Prog Phys. 1988;51(4):459–539.
  • Ang R, Khan AU, Tsujii N, et al. Thermoelectricity generation and electron-magnon scattering in a natural chalcopyrite mineral from a deep-sea hydrothermal vent. Angew Chem Int Ed. 2015 Oct;54(44):12909–12913.
  • Takaki H, Kobayashi K, Shimono M, et al. Thermoelectric properties of a magnetic semiconductor CuFeS2. Mater Today Phys. 2017 Dec;3:85–92.
  • Skoug EJ, Cain JD, Morelli DT. Thermoelectric properties of the Cu2SnSe3-Cu2GeSe3 solid solution. J Alloys Compd. 2010 Sep;506(1):18–21.
  • Skoug EJ, Cain JD, Morelli DT. High thermoelectric figure of merit in the Cu3SbSe4-Cu3SbS4 solid solution. Appl Phys Lett. 2011 Jun;98(26):3.
  • Parker D, May AF, Wang H, et al. Electronic and thermoelectric properties of CoSbS and FeSbS. Phys Rev B. 2013 Oct;88(15):1.
  • Guelou G, Failamani F, Sauerschnig P, et al. Role of excess tellurium on the electrical and thermal properties in Te-doped paracostibite. J Mater Chem C. 2020 Feb;8(5):1811–1818.
  • Khan AU, Al Orabi RA, Pakdel A, et al. Sb doping of metallic CuCr2S4 as a route to highly improved thermoelectric properties. Chem Mater. 2017 Apr;29(7):2988–2996.
  • Berthebaud D, Lebedev OI, Maignan A, et al. Magnetothermopower and giant magnetoresistance in the spin-glass CuCrTiS4 thiospinel. J Appl Phys. 2018;124:6.
  • Bourges C, Srinivasan B, Fontaine B, et al. Tailoring the thermoelectric and structural properties of Cu-Sn based thiospinel compounds CuM1+xSn1-xS4 (M = Ti, V, Cr, Co). J Mater Chem C. 2020 Dec;8(46):17.
  • Xi L, Zhang YB, Shi XY, et al. Chemical bonding, conductive network, and thermoelectric performance of the ternary semiconductors Cu2SnX3 (X = Se, S) from first principles. Phys Rev B. 2012 Oct;86(15):14.
  • Shen YW, Li C, Huang R, et al. Eco-friendly p-type Cu2SnS3 thermoelectric material: crystal structure and transport properties. Sci Rep. 2016;6:8.
  • Zhao L, Chen CC, Pan L, et al. Magnetic iron doping in Cu2SnS3 ceramics for enhanced thermoelectric transport properties. J Appl Phys. 2019;125:9.
  • Guélou G, Lemoine P, Raveau B, et al. Recent developments in high-performance thermoelectric sulphides: an overview of the promising synthetic colusites. J Mater Chem C. 2021;9:773–795.
  • Suekuni K, Kim FS, Nishiate H, et al. High-performance thermoelectric minerals: colusites Cu26V2M6S32 (M = Ge, Sn). Appl Phys Lett. 2014 Sep;105(13):4.
  • Zhang Z, Zhao H, Wang Y, et al. Role of crystal transformation on the enhanced thermoelectric performance in Mn-doped Cu2SnS3. J Alloys Compd. 2019;780:618–625.
  • Berg DM, Djemour R, Gutay L, et al. Raman analysis of monoclinic Cu2SnS3 thin films. Appl Phys Lett. 2012;100:19.
  • Oliva F, Arques L, Acebo L, et al. Characterization of Cu2SnS3 polymorphism and its impact on optoelectronic properties. J Mater Chem A. 2017 Dec 7;5(45):23863–23871.
  • Zawadzki P, Baranowski LL, Peng H, et al. Evaluation of photovoltaic materials within the Cu-Sn-S family. Appl Phys Lett. 2013 Dec;103:25.
  • Nguyen HTT, Zakhvalinskii VS, Pham TT, et al. Structural properties and variable-range hopping conductivity of Cu2SnS3. Mater Res Express. 2019 May;6(5):10.
  • Onoda M, Chen XA, Sato A, et al. Crystal structure and twinning of monoclinic Cu2SnS3. Mater Res Bull. 2000 Jul;35(9):1563–1570.
  • Chen XA, Wada H, Sato A, et al. Synthesis, electrical conductivity, and crystal structure of Cu4Sn7S16 and structure refinement of Cu2SnS3. J Solid State Chem. 1998 Aug;139(1):144–151.
  • Xu X, Zhao H, Hu X, et al. Synergistic role of Ni-doping in electrical and phonon transport properties of Cu2Sn1-xNixS3. J Alloys Compd. 2017;728:701–708.
  • Deng TT, Qiu PF, Song QF, et al. Thermoelectric properties of non-stoichiometric Cu2+xSn1-xS3 compounds. J Appl Phys. 2019 Aug;126(8):9.
  • Tan Q, Sun W, Li ZL, et al. Enhanced thermoelectric properties of earth-abundant Cu2SnS3 via in doping effect. J Alloys Compd. 2016 Jul;672:558–563.
  • Lohani K, Nautiyal H, Ataollahi N, et al. Experimental and Ab initio study of Cu2SnS3 (CTS) polymorphs for thermoelectric applications. J Phys Chem C. 2021 Jan;125(1):178–188.
  • Zhao HW, Xu XX, Li C, et al. Cobalt-doping in Cu2SnS3: enhanced thermoelectric performance by synergy of phase transition and band structure modification. J Mater Chem A. 2017 Nov;5(44):23267–23275.
  • Callaway J, Von Baeyer HC. Effect of point imperfections on lattice thermal conductivity. Phys Rev. 1960;120(4):1149–1154.
  • Doebelin N, Kleeberg R. Profex: a graphical user interface for the Rietveld refinement program BGMN. J Appl Crystallogr. 2015 Oct;48:1573–1580.
  • Li C, Shen YW, Huang R, et al. Hierarchically structured thermoelectric materials in quaternary system Cu-Zn-Sn-S featuring a mosaic-type nanostructure. ACS Appl Nano Mater. 2018 Jun;1(6):2579–2588.
  • Li C, Song HL, Shen YW, et al. Evolution of cation ordering and crystal defects controlled by Zn substitutions in Cu2SnS3 ceramics. Aip Adv. 2018;8:10.
  • Kumar VP, Lemoine P, Carnevali V, et al. Ordered sphalerite derivative Cu5Sn2S7: a degenerate semiconductor with high carrier mobility in the Cu-Sn-S diagram. J Mater Chem A. 2021. DOI:https://doi.org/10.1039/D1TA01615F
  • Snyder GJ, Toberer ES. Complex thermoelectric materials. Nat Mater. 2008 Feb;7(2):105–114.
  • Whittles TJ, Veal TD, Savory CN, et al. Core levels, band alignments, and valence-band states in CuSbS2 for solar cell applications. ACS Appl Mater Interfaces. 2017 Dec;9(48):41916–41926.
  • Kim HS, Gibbs ZM, Tang YL, et al. Characterization of Lorenz number with Seebeck coefficient measurement. Apl Mater. 2015 Apr;3(4):5 .
  • Du BL, Zhang RZ, Liu M, et al. Crystal structure and improved thermoelectric performance of iron stabilized cubic Cu3SbS3 compound. J Mater Chem C. 2019 Jan;7(2):394–404.
  • Wang XJ, Mori T, Kuzmych-Ianchuk I, et al. Thermal conductivity of layered borides: the effect of building defects on the thermal conductivity of TmAlB4 and the anisotropic thermal conductivity of AlB2. APL Mater. 2014;2:4.
  • Yang YB, Ying PZ, Wang JZ, et al. Enhancing the thermoelectric performance of Cu3SnS4-based solid solutions through coordination of the Seebeck coefficient and carrier concentration. J Mater Chem A. 2017 Sep 21;5(35):18808–18815.
  • Deng TT, Xing T, Brod MK, et al. Discovery of high-performance thermoelectric copper chalcogenide using modified diffusion-couple high-throughput synthesis and automated histogram analysis technique. Energ Environ Sci. 2020 Sep 1;13(9):3041–3053.
  • Deng T, Qiu P, Xing T, et al. A low-cost and eco-friendly Br-doped Cu7Sn3S10 thermoelectric compound with ZT around unity. J Mater Chem A. 2021 Feb;9(12):7946–7954.
  • Cui JL, He TT, Han ZK, et al. Improved thermoelectric performance of solid solution Cu4Sn7.5S16 through isoelectronic substitution of Se for S. Sci Rep-Uk. 2018;29:8.