4,585
Views
11
CrossRef citations to date
0
Altmetric
Bio-inspired and biomedical materials

Current approaches for the exploration of antimicrobial activities of nanoparticles

, &
Pages 885-907 | Received 23 Apr 2021, Accepted 02 Sep 2021, Published online: 15 Oct 2021

References

  • Baranwal A, Srivastava A, Kumar P, et al. Prospects of nanostructure materials and their composites as antimicrobial agents. Front Microbiol. 2018;9:422.
  • Shaikh S, Nazam N, Rizvi SMD, et al. Mechanistic insights into the antimicrobial actions of metallic nanoparticles and their implications for multidrug resistance. Int J Mol Sci. 2019;20(10):2468.
  • Narenkumar J, Alsalhi MS, Arul Prakash A, et al. Impact and role of bacterial communities on biocorrosion of metals used in the processing industry. ACS Omega. 2019;4(25):21353–21360.
  • Boudarel H, Mathias JD, Blaysat B, et al. Towards standardized mechanical characterization of microbial biofilms: analysis and critical review. Npj Biofilms Microbiomes. 2018;4:17.
  • Modrow S, Falke D, Truyen U, et al. Viruses: definition, structure, classifications. Germany: Springer; 2013.
  • Swaminathan M, Sharma NK. Antimicrobial activity of the engineered nanoparticles used as coating agents. Switzerland: Springer; 2019.
  • Wang L, Hu C, Shao L. The antimicrobial activity of nanoparticles: present situation and the prospects for the future. Int J Nanomedicine. 2017;12:1227–1249.
  • Beyth N, Houri-Haddad Y, Domb A, et al. Alternative antimicrobial approach: nano-antimicrobial materials. Evidence Based Complement Altern Med. 2015;2015:246012.
  • Jeong Y, Lim DW, Choi J. Assessment of size-dependent antimicrobial and cytotoxic properties of silver nanoparticles. Adv Mater Sci Eng. 2014;2014:763807.
  • Bankier C, Matharu RK, Cheong YK, et al. Synergistic antibacterial effects of metallic nanoparticle combinations. Sci Rep. 2019;9:16074.
  • Çaykara T, Sande MG, Azoia N, et al. Exploring the potential of polyethylene terephthalate in the design of antibacterial surfaces. Med Microbiol Immunol. 2020;209:363–372.
  • Knetsch MLW, Koole LH. New strategies in the development of antimicrobial coatings: the example of increasing usage of silver and silver nanoparticles. Polymers (Basel). 2011;3:340–366.
  • Abbaszadegan A, Ghahramani Y, Gholami A, et al. The effect of charge at the surface of silver nanoparticles on antimicrobial activity against gram-positive and gram-negative bacteria: a preliminary study. J Nanomater. 2015;2015:720654.
  • Muniandy SS, Sasidharan S, Lee HL. Green synthesis of Ag nanoparticles and their performance towards antimicrobial properties. Sains Malaysiana. 2019;48(4):851–860.
  • Ahmed S, Ahmad M, Swami BL, et al. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise. J Adv Res. 2016;7(1):17–28.
  • Slavin YN, Asnis J, Häfeli UO, et al. Metal nanoparticles: understanding the mechanisms behind antibacterial activity. J Nanobiotechnology. 2017;15(1):1–20.
  • Rice KM, Ginjupalli GK, Manne NDPK, et al. A review of the antimicrobial potential of precious metal derived nanoparticles constructs. Nanotechnology. 2019;30:372001.
  • Singh P, Garg A, Pandit S, et al. Antimicrobial effects of biogenic nanoparticles. Nanomaterials. 2018;8(12):1009.
  • Liu Z, Persson S, Sánchez-Rodríguez C. At the border: the plasma membrane-cell wall continuum. J Exp Bot. 2015;66(6):1553–1563.
  • Sarwar A, Katas H, Samsudin SN, et al. Regioselective sequential modification of chitosan via azide-alkyne click reaction: synthesis, characterization, and antimicrobial activity of chitosan derivatives and nanoparticles. PLoS One. 2015;10(4):e0123084.
  • Pajerski W, Ochonska D, Brzychczy-Wloch M, et al. Attachment efficiency of gold nanoparticles by Gram-positive and Gram-negative bacterial strains governed by surface charges. J Nanopart Res. 2019;21(8):186–195.
  • Al-Sharqi A, Apun K, Vincent M, et al. Investigation of the antibacterial activity of Ag-NPs conjugated with a specific antibody against Staphylococcus aureus after photoactivation. J Appl Microbiol. 2020;128(1):102–115.
  • Jamdagni P, Sidhu PK, Khatri P, et al. Metallic nanoparticles: potential antimicrobial and therapeutic agent. Singapore: Springer; 2018.
  • Katas H, Moden NZ, Lim CS, et al. Biosynthesis and potential applications of silver and gold nanoparticles and their chitosan-based nanocomposites in nanomedicine. J nanotechnol. 2018;2018:4290705.
  • Dong Y, Zhu H, Shen Y, et al. Antibacterial activity of silver nanoparticles of different particle size against Vibrio Natriegens. PLoS One. 2019;14(9):1–12.
  • Dasari TPS YZ. Antibacterial activity and cytotoxicity of gold (I) and (III) ions and gold nanoparticles. Biochem Pharmacol Open Access. 2015;4:199.
  • Vaidya MY, McBain AJ, Butler JA, et al. Antimicrobial efficacy and synergy of metal ions against Enterococcus faecium, Klebsiella pneumoniae and Acinetobacter baumannii in planktonic and biofilm phenotypes. Sci Rep. 2017;7(1):5911.
  • Hsueh YH, Lin KS, Ke WJ, et al. The antimicrobial properties of silver nanoparticles in Bacillus subtilis are mediated by released Ag+ ions. PLoS One. 2015;10(12):1–17.
  • Ferdous Z, Nemmar A. Health impact of silver nanoparticles: a review of the biodistribution and toxicity following various routes of exposure. Int J Mol Sci. 2020;21(7):2375.
  • Nam G, Rangasamy S, Purushothaman B, et al. The application of bactericidal silver nanoparticles in wound treatment. Nanomater Nanotechnol. 2015;5(1):23–37.
  • Contini C, Schneemilch M, Gaisford S, et al. Nanoparticle–membrane interactions. J Exp Nanosci. 2018;13(1):62–81.
  • Behzadi S, Serpooshan V, Tao W, et al. Cellular uptake of nanoparticles: journey inside the cell. Chem Soc Rev. 2017;46(14):4218–4244.
  • Mirzajani F, Ghassempour A, Aliahmadi A, et al. Antibacterial effect of silver nanoparticles on Staphylococcus aureus. Res Microbiol. 2011;162(5):542–549.
  • Ontong JC, Paosen S, Shankar S, et al. Eco-friendly synthesis of silver nanoparticles using Senna alata bark extract and its antimicrobial mechanism through enhancement of bacterial membrane degradation. J Microbiol Methods. 2019;165:105692.
  • Lee B, Lee DG. Synergistic antibacterial activity of gold nanoparticles caused by apoptosis-like death. J Appl Microbiol. 2019;127(3):701–712.
  • Cepas V, López Y, Muñoz E, et al. Relationship between biofilm formation and antimicrobial resistance in Gram-Negative bacteria. Microb Drug Resist. 2019;25(1):72–79.
  • Jamal M, Ahmad W, Andleeb S, et al. Bacterial biofilm and associated infections. J Chin Med Assoc. 2018;81(1):7–11.
  • Verderosa AD, Totsika M, Fairfull-Smith KE. Bacterial biofilm eradication agents: a current review. Front Chem. 2019;7:824.
  • Soto-Giron MJ, Rodriguez-R LM, Luo C, et al. Biofilms on hospital shower hoses: characterization and implications for nosocomial infections. Appl Environ Microbiol. 2016;82(9):2872–2883.
  • Hall CW, Mah TF. Molecular mechanisms of biofilm-based antibiotic resistance and tolerance in pathogenic bacteria. FEMS Microbiol Rev. 2017;41(3):276–301.
  • Singh P, Pandit S, Beshay M, et al. Anti-biofilm effects of gold and silver nanoparticles synthesized by the Rhodiola rosea rhizome extracts. Artif Cells Nanomed Biotechnol. 2018;2018(46):886–899.
  • Suresh Y, Annapurna S, Singh AK, et al. Characterization and evaluation of anti-biofilm effect of green synthesized copper nanoparticles. Mater Today Proc. 2016;3(6):1678–1685.
  • Ramasamy M, Lee JH, Lee J. Direct one-pot synthesis of cinnamaldehyde immobilized on gold nanoparticles and their antibiofilm properties. Colloids Surf B Biointerfaces. 2017;160:639–648.
  • Shafreen RB, Seema S, Ahamed AP, et al. Inhibitory effect of biosynthesized silver nanoparticles from extract of Nitzschia palea against curli-mediated biofilm of Escherichia coli. Appl Biochem Biotechnol. 2017;183(4):1351–1361.
  • Mahmoudi E, Ng LY, Ang WL, et al. Enhancing morphology and separation performance of polyamide 6,6 membranes by minimal incorporation of silver decorated graphene oxide nanoparticles. Sci Rep. 2019;9(1):1216.
  • Nguyen NYT, Grelling N, Wetteland CL, et al. Antimicrobial activities and mechanisms of magnesium oxide nanoparticles (nMgO) against pathogenic bacteria, yeasts, and biofilms. Sci Rep. 2018;8(1):162260.
  • Flores-López LZ, Espinoza-Gómez H, Somanathan R. Silver nanoparticles: electron transfer, reactive oxygen species, oxidative stress, beneficial, and toxicological effects. Mini review. J Appl Toxicol. 2019;39(1):16–26.
  • Dai Y, Wang Z, Zhao J, et al. Interaction of CuO nanoparticles with plant cells: internalization, oxidative stress, electron transport chain disruption, and toxicogenomic responses. Environ Sci Nano. 2018;5(10):2269–2281.
  • Feng X, Chen A, Zhang Y, et al. Central nervous system toxicity of metallic nanoparticles. Int J Nanomedicine. 2015;10:4321–4340.
  • Dayem AA, Hossain MK, Bin LS, et al. The role of reactive oxygen species (ROS) in the biological activities of metallic nanoparticles. Int J Mol Sci. 2017;18(1):120.
  • Chen Q, Wang N, Zhu M, et al. TiO2 nanoparticles cause mitochondrial dysfunction, activate inflammatory responses, and attenuate phagocytosis in macrophages: a proteomic and metabolomic insight. Redox Biol. 2018;15:266–276.
  • Muntean DM, Sturza A, Dǎnilǎ MD, et al. The role of mitochondrial reactive oxygen species in cardiovascular injury and protective strategies. Oxid Med Cell Longev. 2016;2016:8254942.
  • Mazat JP, Devin A, Ransac S. Modelling mitochondrial ROS production by the respiratory chain. Cell Mol Life Sci. 2020;77(3):455–465.
  • Pereira EJ, Smolko CM, Janes KA. Computational models of reactive oxygen species as metabolic byproducts and signal-transduction modulators. Front Pharmacol. 2016;7:457.
  • Patel R, Rinker L, Peng J, et al. Reactive oxygen species: the good and the bad react. United Kingdom (UK): IntechOpen; 2018.
  • Lavado AS, Chauhan VM, Alhaj Zen A, et al. Controlled intracellular generation of reactive oxygen species in human mesenchymal stem cells using porphyrin conjugated nanoparticles. Nanoscale. 2015;7(34):14525–14531.
  • Collin F. Chemical basis of reactive oxygen species reactivity and involvement in neurodegenerative diseases. Int J Mol Sci. 2019;20:2407.
  • Ansari MA, Khan HM, Alzohairy MA, et al. Green synthesis of Al2O3 nanoparticles and their bactericidal potential against clinical isolates of multi-drug resistant Pseudomonas aeruginosa. World J Microbiol Biotechnol. 2015;31(1):153–164.
  • Zuberek M, Grzelak A. Nanoparticles-caused oxidative imbalance. Adv Exp Med Biol. 2018;1048:85–98.
  • Kanti Das T, Wati MR, Fatima-Shad K. Oxidative stress gated by Fenton and Haber Weiss reactions and its association with Alzheimer’s disease. Arch Neurosci. 2014;2(2):e20078.
  • Xu D, Liu D, Wang B, et al. In situ OH generation from O2- and H2O2 plays a critical role in plasma-induced cell death. PLoS One. 2015;10(6):e0128205.
  • Priyadarshini S, Mainal A, Sonsudin F, et al. Biosynthesis of TiO2 nanoparticles and their superior antibacterial effect against human nosocomial bacterial pathogens. Res Chem Intermed. 2020;46(2):1077–1089.
  • Abdussalam-mohammed W. Comparison of chemical and biological properties of metal nanoparticles (Au, Ag), with metal oxide nanoparticles (ZnO-NPs) and their applications. Adv J Chem A. 2020;3(2):192–210.
  • Kumar P, Huo P, Zhang R, et al. Antibacterial properties of graphene-based nanomaterials. Nanomaterials. 2019;9(5):737.
  • Geetha Bai R, Muthoosamy K, Shipton FN, et al. The biogenic synthesis of a reduced graphene oxide-silver (RGO-Ag) nanocomposite and its dual applications as an antibacterial agent and cancer biomarker sensor. RSC Adv. 2016;6(64):36576–36587.
  • Khorrami S, Abdollahi Z, Eshaghi G, et al. An improved method for fabrication of Ag-GO nanocomposite with controlled anti-cancer and anti-bacterial behavior; A comparative study. Sci Rep. 2019;9:9167.
  • Mahmoudi E, Ng LY, Ba-abbad MM, et al. Novel nanohybrid polysulfone membrane embedded with silver nanoparticles on graphene oxide nanoplates. Chem Eng J. 2015;277:1–10.
  • Shi T, Wei Q, Wang Z, et al. Photocatalytic protein damage by silver nanoparticles circumvents bacterial stress response and multidrug resistance. mSphere. 2019;4(3):e00175–19.
  • Khan HA, Baig FK, Mehboob R. Nosocomial infections: epidemiology, prevention, control and surveillance. Asian Pac J Trop Biomed. 2017;7(5):478–482.
  • Rashid MA, Khatib F, Sattar A Protein preliminaries and structure prediction fundamentals for computer scientists. arXiv. 2015;1–23.
  • Liu J, Peng Q. Protein-gold nanoparticle interactions and their possible impact on biomedical applications. Acta Biomater. 2017;55:13–27.
  • Pohorille A, Wilson MA, Shannon G. Flexible proteins at the origin of life. Life. 2017;7(2):23.
  • Findlay F, Pohl J, Svoboda P, et al. Carbon nanoparticles inhibit the antimicrobial activities of the Human Cathelicidin LL-37 through structural alteration. J Immunol. 2017;199(7):2483–2490.
  • Falahati M, Attar F, Sharifi M, et al. A health concern regarding the protein corona, aggregation and disaggreation. BBA Gen Subj. 2019;1863(5):971–991.
  • Armbruster CE, Smith SN, Johnson AO, et al. The pathogenic potential of Proteus mirabilis is enhanced by other uropathogens during polymicrobial urinary tract infection. Infect Immun. 2017;85(2):e008808.
  • Nisar M, Khan SA, Qayum M, et al. Robust synthesis of ciprofloxacin-capped metallic nanoparticles and their urease inhibitory assay. Molecules. 2016;21(4):1–12.
  • Cha SH, Hong J, McGuffie M, et al. Shape-dependent biomimetic inhibition of enzyme by nanoparticles and their antibacterial activity. ACS Nano. 2015;9(9):9097–9105.
  • Dakal TC, Kumar A, Majumdar RS, et al. Mechanistic basis of antimicrobial actions of silver nanoparticles. Front Microbiol. 2016;7:1831.
  • Saallah S, Lenggoro IW. Nanoparticles carrying biological molecules: recent advances and applications. KONA Powder Part J. 2018;35:89–111.
  • Nene A, Tuli HS. Synergistic effect of copper nanoparticles and antibiotics to enhance antibacterial potential. Biomaterials. 2019;1:33–47.
  • de Dicastillo CL, Patiño C, Galotto MJ, et al. Novel hollow titanium dioxide nanospheres with antimicrobial activity against resistant bacteria. Beilstein J Nanotechnol. 2019;10:1716–1725
  • Carriere M, Sauvaigo S, Douki T, et al. Impact of nanoparticles on DNA repair processes: current knowledge and working hypotheses. Mutagenesis. 2017;32(1):203–213.
  • Hong Y, Zeng J, Wang X, et al. Post-stress bacterial cell death mediated by reactive oxygen species. Proc Natl Acad Sci U S A. 2019;116(20):10064–10071.
  • Cadet J, Davies KJA. Oxidative DNA damage & repair: an introduction. Free Radic Biol Med. 2017;107:2–12.
  • Adeyemi OS, Shittu EO, Akpor B, et al. Silver nanoparticles restrict microbial growth by promoting oxidative stress and DNA damage. EXCLI J. 2020;19:492–500.
  • Mïller P, Jensen DM, Christophersen DV, et al. Measurement of oxidative damage to DNA in nanomaterials exposed cells and animals. Environ Mol Mutagen. 2015;56:97–110.
  • Peres PS, Valerio A, Martinez GR. Synthesis of 8-oxo-7,8-dihydro-2′-deoxyguanosine from 2′-deoxyguanosine using Cu(II)/H2O2/ascorbate: a new strategy for an improved yield. Biotechniques. 2016;60:279–284.
  • Nallanthighal S, Chan C, Murray TM, et al. Differential effects of silver nanoparticles on DNA damage and DNA repair gene expression in Ogg1-deficient and wild type mice. Nanotoxicology. 2017;11(8):996–1011.
  • Belenky P, Ye JD, Porter CBM, et al. Bactericidal antibiotics induce toxic metabolic perturbations that lead to cellular damage. Cell Rep. 2015;13(5):968–980.
  • Schramm FD, Schroeder K, Jonas K. Protein aggregation in bacteria. FEMS Microbiol Rev. 2020;44:54–72.
  • Biola-Clier M, Beal D, Caillat S, et al. Comparison of the DNA damage response in BEAS-2B and A549 cells exposed to titanium dioxide nanoparticles. Mutagenesis. 2017;32(1):161–172.
  • Gurunathan S, Choi Y, Kim J. Antibacterial efficacy of silver nanoparticles on endometritis caused by Prevotella melaninogenica and Arcanobacterium pyogenes in dairy cattle. Front Microbiol. 2018;19:1210.
  • Khandelwal N, Kaur G, Kumar N, et al. Application of silver nanoparticles in viral inhibition: a new hope for antivirals. Dig J Nanomater Biostructures. 2014;9(1):175–186.
  • Brandelli A, Ritter AC, Veras FF. Antimicrobial activities of metal nanoparticles. Switzerland: Springer; 2017.
  • Rafiei S, Rezatofighi SE, Ardakani MR, et al. Gold nanoparticles impair foot-and-mouth disease virus replication. IEEE Trans Nanobioscience. 2016;15:34–40.
  • Morris D, Ansar M, Speshock J, et al. Antiviral and immunomodulatory activity of silver nanoparticles in experimental RSV infection. Viruses. 2019;11(8):732.
  • Elbeshehy EKF, Elazzazy AM, Aggelis G. Silver nanoparticles synthesis mediated by new isolates of Bacillus spp., nanoparticle characterization and their activity against Bean yellow mosaic virus and human pathogens. Front Microbiol. 2015;6:453.
  • Lysenko V, Lozovski V, Lokshyn M, et al. Nanoparticles as antiviral agents against adenoviruses. Adv Nat Sci Nanosci Nanotechnol. 2018;9(2):25021–25029.
  • Vonnemann J, Sieben C, Wolff C, et al. Virus inhibition induced by polyvalent nanoparticles of different sizes. Nanoscale. 2014;6(4):2353–2360.
  • Nikaeen G, Abbaszadeh S, Yousefinejad S. Application of nanomaterials in treatment, anti-infection and detection of coronaviruses. Nanomedicine (Lond). 2020;15:1501–1512.
  • Zheng K, Setyawati MI, Leong DT, et al. Antimicrobial gold nanoclusters. ACS Nano. 2017;11(7):6904–6910.
  • Xie YP, Shen YL, Duan GX, et al. Silver nanoclusters: synthesis, structures and photoluminescence. Mater Chem Front. 2020;4:2205–2222.
  • Zheng K, Setyawati MI, Leong DT, et al. Observing antimicrobial process with traceable gold nanoclusters. Nano Res. 2021;14:1026–1033.
  • Wang P, Yin B, Dong H, et al. Coupling biocompatible Au nanoclusters and cellulose nanofibrils to prepare the antibacterial nanocomposite films. Front Bioeng Biotechnol. 2020;8:1–13.
  • Sousa AA, Hassan SA. Nanoscale advances biomolecular interactions of ultrasmall metallic nanoparticles and nanoclusters. Nanoscale Adv. 2021;3:2995–3027.
  • Slepička P, Rimpelová S, Kasálková NS, et al. Antibacterial properties of plasma-activated perfluorinated substrates with silver nanoclusters deposition. Nanomaterials. 2021;11(1):182.
  • Zheng K, Setyawati MI, Leong DT, et al. Surface ligand chemistry of gold nanoclusters determines their antimicrobial ability. Chem Mater. 2018;30(8):2800–2808.
  • Cui H, Shao ZS, Song Z, et al. Development of gold nanoclusters: from preparation to applications in the field of biomedicine. J Mater Chem C. 2020;8:14312–14333.
  • Yougbare S, Chang TK, Tan SH, et al. Antimicrobial gold nanoclusters: recent developments and future perspectives. Int J Mol Sci. 2019;20(12):2924.
  • Kuo SH, Chien CS, Wang CC, et al. Antibacterial activity of BSA-capped gold nanoclusters against methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-intermediate Staphylococcus aureus (VISA). J Nanomater. 2019;2019:4101293.
  • Song XR, Goswami N, Yang HH, et al. Functionalization of metal nanoclusters for biomedical applications. Analyst. 2016;141:3126–3140.
  • Soundy J, Day D. Delivery of antibacterial silver nanoclusters to Pseudomonas aeruginosa using species-specific DNA aptamers. J Med Microbiol. 2020;69(4):640–652.
  • Tang M, Zhang J, Yang C, et al. Gold nanoclusters for bacterial detection and infection therapy. Front Chem. 2020;8:181.
  • Fernando S, Gunasekara T, Holton J. Antimicrobial nanoparticles: applications and mechanisms of action. Sri Lankan J Infect Dis. 2018;8(1):2–11.
  • Moritz M, Geszke-Moritz M. The newest achievements in synthesis, immobilization and practical applications of antibacterial nanoparticles. Chem Eng J. 2013;228:596–613.
  • Lai-Cheong JE, McGrath JA. Structure and function of skin, hair and nails. Med (UK). 2017;45(6):347–351.
  • Paladini F, Pollini M. Antimicrobial silver nanoparticles for wound healing application: progress and future trends. Materials (Basel). 2019;12:2540.
  • Negut I, Grumezescu V, Grumezescu AM. Treatment strategies for infected wounds. Molecules. 2018;23(9):2392.
  • Mie R, Samsudin MW, Din LB, et al. Synthesis of silver nanoparticles with antibacterial activity using the lichen Parmotrema praesorediosum. Int J Nanomedicine. 2013;9(1):121–127.
  • Mihai MM, Dima MB, Holban AM. Nanomaterials for wound healing and infection control. Materials. 2019;12(13):2176.
  • Kalantari K, Mostafavi E, Afifi AM, et al. Wound dressings functionalized with silver nanoparticles: promises and pitfalls. Nanoscale. 2020;12(4):2268–2291.
  • Ahmadi M, Adibhesami M. The effect of silver nanoparticles on wounds contaminated with Pseudomonas aeruginosa in mice: an experimental study. Iran J Pharm Res. 2107;16(2):661–669.
  • Mârza SM, Magyari K, Bogdan S, et al. Skin wound regeneration with bioactive glass-gold nanoparticles ointment. Biomed Mater. 2019;14(2):025011.
  • Hasan A, Morshed M, Memic A, et al. Nanoparticles in tissue engineering: applications, challenges and prospects. Int J Nanomedicine. 2018;13:5637–5655.
  • Vial S, Reis RL, Oliveira JM. Recent advances using gold nanoparticles as a promising multimodal tool for tissue engineering and regenerative medicine. Curr Opin Solid State Mater Sci. 2017;21(2):92–112.
  • Rahmani Del Bakhshayesh A, Annabi N, Khalilov R, et al. Recent advances on biomedical applications of scaffolds in wound healing and dermal tissue engineering. Artif Cells Nanomed Biotechnol. 2018;46(4):691–705.
  • Mi P, Kokuryo D, Cabral H, et al. A pH-activatable nanoparticle with signal-amplification capabilities for non-invasive imaging of tumour malignancy. Nat Nanotechnol. 2016;11(8):724–730.
  • Bahal R, Ali Mcneer N, Quijano E, et al. In vivo correction of anaemia in β-thalassemic mice by γ3PNA-mediated gene editing with nanoparticle delivery. Nat Commun. 2016;2016(7):13304.
  • Yadid M, Feiner R, Dvir T. Gold nanoparticle-integrated scaffolds for tissue engineering and regenerative medicine. Nano Lett. 2019;19:2198–2206.
  • Fathi-Achachelouei M, Knopf-Marques H, Ribeiro da Silva CE, et al. Use of nanoparticles in tissue engineering and regenerative medicine. Front Bioeng Biotechnol. 2019;7:113.
  • Zhang Y, Zhai D, Xu M, et al. 3D-printed bioceramic scaffolds with antibacterial and osteogenic activity. Biofabrication. 2017;9(2):025037.
  • Tavakoli M, Bakhtiari SSE, Karbasi S. Incorporation of chitosan/graphene oxide nanocomposite in to the PMMA bone cement: physical, mechanical and biological evaluation. Int J Biol Macromol. 2020;149:783–793.
  • Ilhan E, Karahaliloglu Z, Kilicay E, et al. Potent bioactive bone cements impregnated with polystyrene-g-soybean oil-AgNPs for advanced bone tissue applications. Mater Technol. 2020;35(3):179–194.
  • Zhang P, Qin J, Zhang B, et al. Gentamicin-loaded silk/ nanosilver composite scaffolds for MRSA-induced chronic osteomyelitis. R Soc Open Sci. 2019;6(5):182102.
  • Makvandi P, Wang CY, Zare EN, et al. Metal-based nanomaterials in biomedical applications: antimicrobial activity and cytotoxicity aspects. Adv Funct Mater. 2020;30:1910021.
  • De Mori A, Di Gregorio E, Kao AP, et al. Antibacterial PMMA composite cements with tunable thermal and mechanical properties. ACS Omega. 2019;4(22):19664–19675.
  • Wekwejt M, Michno A, Truchan K, et al. Antibacterial activity and cytocompatibility of bone cement enriched with antibiotic, nanosilver, and nanocopper for bone regeneration. Nanomaterials. 2019;9(8):1114.
  • Andersen MJ, Flores-Mireles AL. Urinary catheter coating modifications: the race against catheter-associated infections. Coatings. 2020;10:23.
  • Haque M, Sartelli M, McKimm J, et al. Health care-associated infections – an overview. Infect Drug Resist. 2018;11:2321–2333.
  • Zhu Z, Wang Z, Li S, et al. Antimicrobial strategies for urinary catheters. J Biomed Mater Res - Part A. 2019;107(2):445–467.
  • Yassin MA, Elkhooly TA, Elsherbiny SM, et al. Facile coating of urinary catheter with bio–inspired antibacterial coating. Heliyon. 2019;5(12):e02986.
  • Zhang S, Wang L, Liang X, et al. Enhanced antibacterial and antiadhesive activities of silver-PTFE nanocomposite coating for urinary catheters. ACS Biomater Sci Eng. 2019;5:2804–2814.
  • Al-Qahtani M, Safan A, Jassim G, et al. Efficacy of anti-microbial catheters in preventing catheter associated urinary tract infections in hospitalized patients: a review on recent updates. J Infect Public Health. 2019;12(6):760–766.
  • Sun C, Li Y, Li Z, et al. Durable and washable antibacterial copper nanoparticles bridged by surface grafting polymer brushes on cotton and polymeric materials. J Nanomater. 2018;2018:6546193.
  • Abbai R, Mathiyalagan R, Markus J, et al. Green synthesis of multifunctional silver and gold nanoparticles from the oriental herbal adaptogen: Siberian ginseng. Int J Nanomedicine. 2016;11:3131–3143.
  • Hamilton MF, Otte AD, Gregory RL, et al. Physicomechanical and antibacterial properties of experimental resin-based dental sealants modified with nylon-6 and chitosan nanofibers. J Biomed Mater Res Part B Appl Biomater. 2015;103(8):1560–1568.
  • Gordon SB, Shaddox LM. Nanoparticles in Dentistry : evidence and Future. AJBSR. 2020;8(4):321–323.
  • Kamonkhantikul K, Arksornnukit M, Takahashi H. Antifungal, optical, and mechanical properties of polymethylmethacrylate material incorporated with silanized zinc oxide nanoparticles. Int J Nanomedicine. 2017;12:2353–2360.
  • Ahmed F, Prashanth ST, Sindhu K, et al. Antimicrobial efficacy of nanosilver and chitosan against Streptococcus mutants, as an ingredient of toothpaste formulation: an in vitro study. J Indian Soc Pedod Prev Dent. 2017;37:46–54.
  • Carrouel F, Viennot S, Ottolenghi L, et al. Nanoparticles as anti-microbial, anti-inflammatory, and remineralizing agents in oral care cosmetics: a review of the current situation. Nanomaterials. 2020;10:140.
  • Carbone M, Donia DT, Sabbatella G, et al. Silver nanoparticles in polymeric matrices for fresh food packaging. J King Saud Univ Sci. 2016;28(4):273–279.
  • He Y, Ingudam S, Reed S, et al. Study on the mechanism of antibacterial action of magnesium oxide nanoparticles against foodborne pathogens. J Nanobiotechnology. 2016;14(1):54.
  • Simbine EO, Rodrigues L da C, Lapa-Guimarães J, et al. Application of silver nanoparticles in food packages: a review. Food Sci Technol. 2019;39(4):793–802.
  • Dobrucka R, Ankiel M. Possible applications of metal nanoparticles in antimicrobial food packaging. J Food Saf. 2019;39(2):12617.
  • Shankar S, Rhim JW. Tocopherol-mediated synthesis of silver nanoparticles and preparation of antimicrobial PBAT/silver nanoparticles composite films. LWT Food Sci Technol. 2016;72:149–156.
  • Azlin-Hasim S, Cruz-Romero MC, Cummins E, et al. The potential use of a layer-by-layer strategy to develop LDPE antimicrobial films coated with silver nanoparticles for packaging applications. J Colloid Interface Sci. 2016;461:239–248.
  • Kim I, Viswanathan K, Kasi G, et al. ZnO nanostructures in active antibacterial food packaging: preparation methods, antimicrobial mechanisms, safety issues, future prospects, and challenges. Food Rev Int. 2020;1–29.
  • Nile SH, Baskar V, Selvaraj D, et al. Nanotechnologies in food science: applications, recent trends, and future perspectives. Nano-Micro Lett. 2020;12:45.
  • Motshekga SC, Ray SS, Onyango MS, et al. Preparation and antibacterial activity of chitosan-based nanocomposites containing bentonite-supported silver and zinc oxide nanoparticles for water disinfection. Appl Clay Sci. 2015;114:330–339.
  • Dimapilis EAS, Hsu CS, Mendoza RMO, et al. Zinc oxide nanoparticles for water disinfection. Sustain Environ Res. 2018;28(2): 47–56
  • Mustapha S, Ndamitso MM, Abdulkareem AS, et al. Application of TiO2 and ZnO nanoparticles immobilized on clay in wastewater treatment: a review. Appl Water Sci. 2020;10(1):1–36.
  • Dale AL, Casman EA, Lowry GV, et al. Modeling nanomaterial environmental fate in aquatic systems. Environ Sci Technol. 2015;49(5):2587–2593.
  • Lofrano G, Carotenuto M, Libralato G, et al. Polymer functionalized nanocomposites for metals removal from water and wastewater: an overview. Water Res. 2016;92:22–37.
  • Erol K, Bolat M, Tatar D, et al. Synthesis, characterization and antibacterial application of silver nanoparticle embedded composite cryogels. J Mol Struct. 2020;1200:127060.
  • Haan TY. Rosnan NA, Mohammad AW, et al. Synthesis and characterization of ZnO-decorated GO nanocomposite material with different ZnO loading through sol-gel method. J Kejuruter. 2018;30(2):249–255.
  • Suleman Ismail Abdalla S, Katas H, Chan JY, et al. Antimicrobial activity of multifaceted lactoferrin or graphene oxide functionalized silver nanocomposites biosynthesized using mushroom waste and chitosan. RSC Adv. 2020;10(9):4969–4983.
  • Wierzbicki M, Jaworski S, Sawosz E, et al. Graphene oxide in a composite with silver nanoparticles reduces the fibroblast and endothelial cell cytotoxicity of an antibacterial nanoplatform. Nanoscale Res Lett. 2019;14(1):320.
  • Moustafa MT. Removal of pathogenic bacteria from wastewater using silver nanoparticles synthesized by two fungal species. Water Sci. 2017;31(2):164–176.
  • Steckiewicz KP, Inkielewicz-Stepniak I. Modified nanoparticles as potential agents in bone diseases: cancer and implant-related complications. Nanomaterials. 2020;10(4):658.
  • Salaie RN, Besinis A, Le H, et al. The biocompatibility of silver and nanohydroxyapatite coatings on titanium dental implants with human primary osteoblast cells. Mater Sci Eng C. 2020;107:110210.
  • Mahalakshmi S, Hema N, Vijaya PP. In vitro biocompatibility and antimicrobial activities of zinc oxide nanoparticles (ZnO NPs) prepared by chemical and green synthetic route— a comparative study. Bionanoscience. 2020;10(1):112–121.
  • Rajendran G, Rajamuthuramalingam T. Michael Immanuel Jesse D, et al. Synthesis and characterization of biocompatible acetaminophen stabilized gold nanoparticles. Mater Res Express. 2019;6(9):95043.
  • Kumar S, Jha I, Mogha NK, et al. Biocompatibility of surface-modified gold nanoparticles towards red blood cells and haemoglobin. Appl Surf Sci. 2020;512:145573.
  • Burdușel AC, Gherasim O, Grumezescu AM, et al. Biomedical applications of silver nanoparticles: an up-to-date overview. Nanomaterials. 2018;8(9):681.
  • Chauhan N, Tyagi AK, Kumar P, et al. Antibacterial potential of Jatropha curcas synthesized silver nanoparticles against food borne pathogens. Front Microbiol. 2016;7(1):1748.
  • Sanchooli N, Saeidi S, Barani HK, et al. In vitro antibacterial effects of silver nanoparticles synthesized using Verbena officinalis leaf extract on Yersinia ruckeri, Vibrio cholera and Listeria monocytogene. Iran J Microbiol. 2018;10(6):400–408.
  • Jabir MS, Taha AA, Sahib UI. Linalool loaded on glutathione-modified gold nanoparticles: a drug delivery system for a successful antimicrobial therapy. Artif Cells Nanomed Biotechnol. 2018;46:345–355.
  • Tahir K, Nazir S, Ahmad A, et al. Facile and green synthesis of phytochemicals capped platinum nanoparticles and in vitro their superior antibacterial activity. J Photochem Photobiol B Biol. 2017;166:246–251.
  • Ibrahem E, Thalij K, Badawy A. Antibacterial potential of magnesium oxide nanoparticles synthesized by. Aspergillus niger Biotechnol J Int. 2017;18(1):1–7.
  • Jesline A, John NP, Narayanan PM, et al. Antimicrobial activity of zinc and titanium dioxide nanoparticles against biofilm-producing methicillin-resistant Staphylococcus aureus. Appl Nanosci. 2015;5(2):157–162.
  • Hadi N, Dawood H. Antibacterial activity of modified zinc oxide nanoparticles against Pseudomonas aeruginosa isolates of burn infections. WSN. 2016;33:1–14.
  • Chaudhary A, Kumar N, Kumar R, et al. Antimicrobial activity of zinc oxide nanoparticles synthesized from Aloe vera peel extract. SN Appl Sci. 2019;1:136.
  • Rashid F, Tahir H, Pervaiz I 7th International Conference on Bacteriology and Infectious Diseases; 2018 June 4-5; Osaka, Japan.
  • Ozcan A, Ogun M. Biochemistry of reactive oxygen and nitrogen species. Saudi Arabia: IntechOpen; 2015.
  • Pankratova G, Hederstedt L, Gorton L. Extracellular electron transfer features of Gram-positive bacteria. Anal Chim Acta. 2019;2019(1076):32–47.
  • Wyszogrodzka G, Marszałek B, Gil B, et al. Metal-organic frameworks: mechanisms of antibacterial action and potential applications. Drug Discov Today. 2016;21(6):1009–1018.