4,310
Views
21
CrossRef citations to date
0
Altmetric
Focus on Advancements of Functional Materials with Nanoarchitectonics as Post-Nanotechnology Concept in Materials Science

Porous carbon architectures with different dimensionalities for lithium metal storage

, , , , &
Pages 169-188 | Received 28 Jan 2022, Accepted 02 Mar 2022, Published online: 06 Apr 2022

References

  • Asl HY, Manthiram A. Toward sustainable batteries. Nat Sustainability. 2021;4(5):379–380
  • Dell RM, Rand DAJ. Energy storage a key technology for global energy sustainability. J Power Sources. 2001;100(1–2):2–17.
  • Hannan MA, Hoque MM, Mohamed A, et al. Review of energy storage systems for electric vehicle applications: issues and challenges. Renew Sust Energ Rev. 2017 march 01;69:771–789.
  • Perumal P, Andersen SM, Nikoloski A, et al. Leading strategies and research advances for the restoration of graphite from expired Li+ energy storage devices. J Environ Chem Eng. 2021;9(6):106455.
  • Mrozik W, Rajaeifar MA, Heidrich O, et al. Environmental impacts, pollution sources and pathways of spent lithium-ion batteries. Energy Environ Sci. 2021;14(12):6099–6121.
  • Dunn B, Kamath H, Tarascon J-M. Electrical energy storage for the grid: a battery of choices. Science. 2011;334(6058):928–935.
  • Wang Y, Zhang W, Chen L, et al. Quantitative description on structure–property relationships of Li-ion battery materials for high-throughput computations. Sci Technol Adv Mater. 2017;18(1):134–146.
  • Ding Y, Cano ZP, Yu A, et al. Automotive Li-ion batteries: current status and future perspectives. Electrochem Energy Rev. 2019;2(1):1–28.
  • Sun P, Bisschop R, Niu H, et al. A review of battery fires in electric vehicles. Fire Technol. 2020;6(4):1361–1410.
  • Liu J, Gu T, Sun X, et al. Synthesis of MnO/C/Co3O4 nanocomposites by a Mn2+-oxidizing bacterium as a biotemplate for lithium-ion batteries. Sci Technol Adv Mater. 2021;22(1):429–440.
  • Jehnichen P, Wedlich K, Korte C. Degradation of high-voltage cathodes for advanced lithium-ion batteries–differential capacity study on differently balanced cells. Sci Technol Adv Mater. 2019;20(1):1–9.
  • Baik JM, Lee JP. Strategies for ultrahigh outputs generation in triboelectric energy harvesting technologies: from fundamentals to devices. Sci Technol Adv Mater. 2019;20(1):927–936.
  • Kim JH. Focus on nanogenerators: toward smart wearable devices. Sci Technol Adv Mater. 2020;21(1):422–423.
  • Han SA, Lee JH, Seung W, et al. Patchable and implantable 2D nanogenerator. Small. 2021;17(9):1903519.
  • Hyeon Y, Lee J, Qutaish H, et al. Lithium metal storage in zeolitic imidazolate framework derived nanoarchitectures. Energy Storage Mater. 2020;33:95–107.
  • Shin HR, Yun J, Eom GH, et al. Mechanistic and nanoarchitectonics insight into Li–host interactions in carbon hosts for reversible Li metal Storage. Nano Energy. 2022;95:106999.
  • Ghazi ZA, Sun Z, Sun C, et al. Key aspects of lithium metal anodes for lithium metal batteries. Small. 2019;15(32):1900687.
  • Pathak R, Chen K, Wu F, et al. Advanced strategies for the development of porous carbon as a Li host/current collector for lithium metal batteries. Energy Storage Mater. 2021;41:448–465.
  • Kang J-H, Lee J, Jung J-W, et al. Lithium–air batteries: air-breathing challenges and perspective. ACS nano. 2020;14(11):14549–14578.
  • Ye H, Zhang Y, Yin Y-X, et al. An outlook on low-volume-change lithium metal anodes for long-life batteries. ACS Cent Sci. 2020;6(5):661–671.
  • Liu W, Liu P, Mitlin D. Tutorial review on structure–dendrite growth relations in metal battery anode supports. Chem Soc Rev. 2020;49(20):7284–7300.
  • Zhang C, Huang Z, Lv W, et al. Carbon enables the practical use of lithium metal in a battery. Carbon. 2017;123:744–755.
  • Zhang X, Wang A, Liu X, et al. Dendrites in lithium metal anodes: suppression, regulation, and elimination. Acc Chem Res. 2019;52(11):3223–3232.
  • Wang J, Xu Y, Ding B, et al. Confined self‐assembly in two‐dimensional interlayer space: monolayered mesoporous carbon nanosheets with in‐plane orderly arranged mesopores and a highly graphitized framework. Angew Chem. 2018;57(11):2894–2898.
  • Wang X-B, Jiang X-F, Bando Y. Blowing route towards advanced inorganic foams. Bull Chem Soc Jpn. 2019;92(1):245–263.
  • Salunkhe RR, Tang J, Kamachi Y, et al. Asymmetric supercapacitors using 3D nanoporous carbon and cobalt oxide electrodes synthesized from a single metal–organic framework. ACS nano. 2015;9(6):6288–6296.
  • Tang J, Salunkhe RR, Zhang H, et al. Bimetallic metal-organic frameworks for controlled catalytic graphitization of nanoporous carbons. Sci Rep. 2016;6(1):1–8.
  • Lee J-H, Kim J, Kim TY, et al. All-in-one energy harvesting and storage devices?. J Mater Chem A. 2016;4(21):7983–7999.
  • Salunkhe RR, Kaneti YV, Kim J, et al. Nanoarchitectures for metal–organic framework-derived nanoporous carbons toward supercapacitor applications. Acc Chem Res. 2016;49(12):2796–2806.
  • Yan X, Lin L, Chen Q, et al. Multifunctional roles of carbon‐based hosts for Li‐metal anodes: a review carbon. Energy. 2021;230. 10.1016/j.energy.2021.120876.
  • Liu Y, Li X, Fan L, et al. A review of carbon-based materials for safe lithium metal anodes. Front Chem. 2019;7:721.
  • Tang K, Xiao J, Li X, et al. Advances of carbon-based materials for lithium metal anodes. Front Chem. 2020;7:931.
  • Han W, Li Q, Zhu H, et al. Hierarchical porous graphene bubbles as host materials for advanced lithium sulfur battery cathode. Front Chem. 2021;9:171.
  • Guan X, Wang A, Liu S, et al. Controlling nucleation in lithium metal anodes. Small. 2018;14(37):1801423.
  • Li B, Wang Y, Yang S. A material perspective of rechargeable metallic lithium anodes. Adv Energy Mater. 2018;8(13):1702296.
  • Guo Y, Li H, Zhai T. Reviving lithium‐metal anodes for next‐generation high‐energy batteries. Adv Mater. 2017;29(29):1700007.
  • Li L, Li S, Lu Y. Suppression of dendritic lithium growth in lithium metal-based batteries. Chem Comm. 2018;54(50):6648–6661.
  • Gao M, Li H, Xu L, et al. Lithium metal batteries for high energy density: fundamental electrochemistry and challenges. J Energy Chem. 2021;59:666–687.
  • Vu TT, Kim BG, Kim JH, et al. Suppression of dendritic lithium-metal growth through concentrated dual-salt electrolyte and its accurate prediction?. J Mater Chem A. 2021;9(40):22833–22841.
  • Xu W, Wang J, Ding F, et al. Lithium metal anodes for rechargeable batteries. Energy Environ Sci. 2014;7(2):513–537.
  • Um JH, Yu SH. Unraveling the mechanisms of lithium metal plating/stripping via in situ/operando analytical techniques. Adv Energy Mater. 2021;11(27):2003004.
  • Zhang J-G, Xu W, Henderson WA. Characterization and modeling of lithium dendrite growth. Lithium metal anodes and rechargeable lithium metal batteries. vol. 249. Switzerland: Springer International Publishing Cham; 2017.
  • Hagopian A, Doublet M-L, Filhol J-S. Thermodynamic origin of dendrite growth in metal anode batteries. Energy Environ Sci. 2020;13(12):5186–5197.
  • Han SA, Qutaish H, Park MS, et al. Strategic approaches to the dendritic growth and interfacial reaction of lithium metal anode. Chem–Asian J. 2021;16(24):4010–4017.
  • Li Z, Huang J, Liaw BY, et al. A review of lithium deposition in lithium-ion and lithium metal secondary batteries. J Power Sources. 2014;254:168–182.
  • Steiger J, Kramer D, Mönig R. Mechanisms of dendritic growth investigated by in situ light microscopy during electrodeposition and dissolution of lithium. J Power Sources. 2014;261:112–119.
  • Brissot C, Rosso M, Chazalviel JN, et al. In situ concentration cartography in the neighborhood of dendrites growing in lithium/polymer‐electrolyte/lithium cells. J Electrochem Soc. 1999;146(12):4393.
  • Brissot C, Rosso M, Chazalviel J-N, et al. Concentration measurements in lithium/polymer–electrolyte/lithium cells during cycling. J Power Sources. 2001;94(2):212–218.
  • Brissot C, Rosso M, Chazalviel J-N, et al. Dendritic growth mechanisms in lithium/polymer cells. J Power Sources. 1999;81:925–929.
  • Fleury V, Chazalviel J-N, Rosso M. Coupling of drift, diffusion, and electroconvection, in the vicinity of growing electrodeposits. Phys Rev E. 1993;48(2):1279.
  • Rosso M, Gobron T, Brissot C, et al. Onset of dendritic growth in lithium/polymer cells. J Power Sources. 2001;97:804–806.
  • Rosso M, Brissot C, Teyssot A, et al. Dendrite short-circuit and fuse effect on Li/polymer/Li cells. Electrochim Acta. 2006;51(25):5334–5340.
  • Cheng J-H, Assegie AA, Huang C-J, et al. Visualization of lithium plating and stripping via in operando transmission X-ray microscopy. J Phys Chem C. 2017;121(14):7761–7766.
  • Bai P, Guo J, Wang M, et al. Interactions between lithium growths and nanoporous ceramic separators. Joule. 2018;2(11):2434–2449.
  • Choudhury S. The many shapes of lithium. Joule. 2018;2(11):2201–2203.
  • Monroe C, Newman J. Dendrite growth in lithium/polymer systems: a propagation model for liquid electrolytes under galvanostatic conditions. J Electrochem Soc. 2003;150(10):A1377.
  • Monroe C, Newman J. The effect of interfacial deformation on electrodeposition kinetics. J Electrochem Soc. 2004;151(6):A880.
  • Ely DR, García RE. Heterogeneous nucleation and growth of lithium electrodeposits on negative electrodes. J Electrochem Soc. 2013;160(4):A662.
  • Pei A, Zheng G, Shi F, et al. Nanoscale nucleation and growth of electrodeposited lithium metal. Nano Lett. 2017;17(2):1132–1139.
  • Barai P, Higa K, Ngo AT, et al. Mechanical stress induced current focusing and fracture in grain boundaries. J Electrochem Soc. 2019;166(10):A1752.
  • Aslam MK, Niu Y, Hussain T, et al. How to avoid dendrite formation in metal batteries: innovative strategies for dendrite suppression. Nano Energy. 2021;86:106142.
  • Schweikert N, Hofmann A, Schulz M, et al. Suppressed lithium dendrite growth in lithium batteries using ionic liquid electrolytes: investigation by electrochemical impedance spectroscopy, scanning electron microscopy, and in situ 7Li nuclear magnetic resonance spectroscopy. J Power Sources. 2013;228:237–243.
  • Cui J, Yao S, Ihsan‐Ul‐Haq M, et al. Correlation between Li plating behavior and surface characteristics of carbon matrix toward stable Li metal anodes. Adv Energy Mater. 2019;9(1):1802777.
  • Zhang R, Cheng XB, Zhao CZ, et al. Conductive nanostructured scaffolds render low local current density to inhibit lithium dendrite growth. Adv Mater. 2016;28(11):2155–2162.
  • Jiang R, Diao W, Xie D, et al. N-doped porous host with lithiophilic co nanoparticles implanted into 3D carbon nanotubes for dendrite-free lithium metal anodes. ACS Appl Energy Mater. 2021;4(11):12871–12881.
  • Farha OK, Eryazici I, Jeong NC, et al. Metal–organic framework materials with ultrahigh surface areas: is the sky the limit? J Am Chem Soc. 2012;134(36):15016–15021.
  • Qutaish H, Lee J, Hyeon Y, et al. Design of cobalt catalysed carbon nanotubes in bimetallic zeolitic imidazolate frameworks. Appl Surf Sci. 2021;547:149134.
  • Liu Y, Xu X, Sadd M, et al. Insight into the critical role of exchange current density on electrodeposition behavior of lithium metal. Adv Sci. 2021;8(5):2003301.
  • Tao R, Bi X, Li S, et al. Kinetics tuning the electrochemistry of lithium dendrites formation in lithium batteries through electrolytes. ACS Appl Mater Interfaces. 2017;9(8):7003–7008.
  • Cheng Y, Chen J, Chen Y, et al. Lithium host: advanced architecture components for lithium metal anode. Energy Storage Mater. 2021;38:276–298.
  • Jeong J, Chun J, Lim W-G, et al. Mesoporous carbon host material for stable lithium metal anode. Nanoscale. 2020;12(22):11818–11824.
  • Zhang Y, Liu B, Hitz E, et al. A carbon-based 3D current collector with surface protection for Li metal anode. Nano Res. 2017;10(4):1356–1365.
  • Geng H, Peng Y, Qu L, et al. Structure design and composition engineering of carbon‐based nanomaterials for lithium energy storage. Adv Energy Mater. 2020;10(10):1903030.
  • Zheng G, Lee SW, Liang Z, et al. Interconnected hollow carbon nanospheres for stable lithium metal anodes. Nat Nanotechnol. 2014;9(8):618–623.
  • Liu F, Xu R, Hu Z, et al. Regulating lithium nucleation via CNTs modifying carbon cloth film for stable Li metal anode. Small. 2019;15(5):1803734.
  • Evers S, Nazar LF. New approaches for high energy density lithium–sulfur battery cathodes. Acc Chem Res. 2013;46(5):1135–1143.
  • Kuang Y, Chen C, Kirsch D, et al. Thick electrode batteries: principles, opportunities, and challenges. Adv Energy Mater. 2019;9(33):1901457.
  • Choi SH, Hyeon Y, Shin HR, et al. Critical role of surface craters for improving the reversibility of Li metal storage in porous carbon frameworks. Nano Energy. 2021;88:106243.
  • Nanda S, Gupta A, Manthiram A. Anode‐free full cells: a pathway to high‐energy density lithium‐metal batteries. Adv Energy Mater. 2021;11(2):2000804.
  • Li Y, Guo S. Material design and structure optimization for rechargeable lithium-sulfur batteries. Matter. 2021;4(4):1142–1188.
  • Chi -S-S, Wang Q, Han B, et al. Lithiophilic Zn sites in porous CuZn alloy induced uniform Li nucleation and dendrite-free Li metal deposition. Nano Lett. 2020;20(4):2724–2732.
  • Sun Z, Jin S, Jin H, et al. Robust expandable carbon nanotube scaffold for ultrahigh‐capacity lithium‐metal anodes. Adv Mater. 2018;30(32):1800884.
  • Roberts AD, Li X, Zhang H. Porous carbon spheres and monoliths: morphology control, pore size tuning and their applications as Li-ion battery anode materials. Chem Soc Rev. 2014;43(13):4341–4356.
  • Shen L, Shi P, Hao X, et al. Progress on lithium dendrite suppression strategies from the interior to exterior by hierarchical structure designs. Small. 2020;16(26):2000699.
  • Lin D, Liu Y, Cui Y. Reviving the lithium metal anode for high-energy batteries. Nat Nanotechnol. 2017;12(3):194–206.
  • Zhang Y, Zuo -T-T, Popovic J, et al. Towards better Li metal anodes: challenges and strategies. Mater Today. 2020;33:56–74.
  • Jiang H, Dong Q, Bai M, et al. A 3D-mixed ion/electron conducting scaffold prepared by in situ conversion for long-life lithium metal anodes. Nanoscale. 2021;13(5):3144–3152.
  • Yun J, Park B-K, Won E-S, et al. Bottom-up lithium growth triggered by interfacial activity gradient on porous framework for lithium-metal anode. ACS Energy Lett. 2020;5(10):3108–3114.
  • Park KH, Kang DW, Park J-W, et al. Modulating the electrical conductivity of a graphene oxide-coated 3D framework for guiding bottom-up lithium growth?. J Mater Chem A. 2021;9(3):1822–1834.
  • Lee J, Park M-S, Kim JH. Stabilizing Li-metal host anode with LiF-rich solid electrolyte interphase. Nano Convergence. 2021;8(1):1–8.
  • Chen X, Chen X-R, Hou T-Z, et al. Lithiophilicity chemistry of heteroatom-doped carbon to guide uniform lithium nucleation in lithium metal anodes. Sci Adv. 2019;5(2):eaau7728.
  • Tarascon JM, Armand M. Issues and challenges facing rechargeable lithium batteries. Nature. 2001 november 01;414(6861):359–367.
  • Cheng X-B, Zhang R, Zhao C-Z, et al. Toward safe lithium metal anode in rechargeable batteries: a review. Chem Rev. 2017 august 09;117(15):10403–10473.
  • Biswal P, Stalin S, Kludze A, et al. Nucleation and early stage growth of Li electrodeposits. Nano Lett. 2019 november 13;19(11):8191–8200.
  • Zuo -T-T, X-w W, Yang C-P, et al. Graphitized carbon fibers as multifunctional 3D current collectors for high areal capacity Li anodes. Adv Mater. 2017;29(29):1700389.
  • Niu C, Pan H, Xu W, et al. Self-smoothing anode for achieving high-energy lithium metal batteries under realistic conditions. Nat Nanotechnol. 2019 june 01;14(6):594–601.
  • Liu K, Li Z, Xie W, et al. Oxygen-rich carbon nanotube networks for enhanced lithium metal anode. Energy Storage Mater. 2018 november 01;15:308–314.
  • Li N, Zhang K, Xie K, et al. Reduced-graphene-oxide-guided directional growth of planar lithium layers. Adv Mater. 2020;32(7):1907079.
  • Zhang R, Chen X-R, Chen X, et al. Lithiophilic sites in doped graphene guide uniform lithium nucleation for dendrite-free lithium metal anodes. Angew Chem. 2017;129(27):7872–7876.
  • Liu H, Chen X, Cheng X-B, et al. Uniform lithium nucleation guided by atomically dispersed lithiophilic conx sites for safe lithium metal batteries. Small Methods. 2019;3(9):1800354.
  • Liu L, Yin Y-X, J-y L, et al. Uniform lithium nucleation/growth induced by lightweight nitrogen-doped graphitic carbon foams for high-performance lithium metal anodes. Adv Mater. 2018;30(10):1706216.
  • Kim J, Lee J, Yun J, et al. Functionality of dual-phase lithium storage in a porous carbon host for lithium-metal anode. Adv Funct Mater. 2020;30(15):1910538.
  • Lee J, Choi SH, Qutaish H, et al. Structurally stabilized lithium-metal anode via surface chemistry engineering. Energy Storage Mater. 2021 may 01;37:315–324.
  • Yang C, Yao Y, He S, et al. Ultrafine silver nanoparticles for seeded lithium deposition toward stable lithium metal anode. Adv Mater. 2017;29(38):1702714.
  • Yan J, Liu M, Deng N, et al. Flexible MnO nanoparticle-anchored N-doped porous carbon nanofiber interlayers for superior performance lithium metal anodes. Nanoscale Adv. 2021;3(4):1136–1147.
  • Yang G, Li Y, Tong Y, et al. Lithium plating and stripping on carbon nanotube sponge. Nano Lett. 2019 january 09;19(1):494–499.
  • Li X, Chu Z, Jiang H, et al. Redistributing Li-ion flux and homogenizing Li-metal growth by N-doped hierarchically porous membranes for dendrite-free lithium metal batteries. Energy Storage Mater. 2021 may 01;37:233–242.
  • Yan K, Lu Z, Lee H-W, et al. Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth. Nature Energy. 2016 february 22;1(3):16010.
  • Fang Y, Zhang SL, Z-p W, et al. A highly stable lithium metal anode enabled by Ag nanoparticle–embedded nitrogen-doped carbon macroporous fibers. Sci Adv. 2021;7(21):eabg3626.
  • Jin C, Sheng O, Luo J, et al. 3D lithium metal embedded within lithiophilic porous matrix for stable lithium metal batteries. Nano Energy. 2017 july 01;37:177–186.