2,707
Views
7
CrossRef citations to date
0
Altmetric
Energy Materials

Advanced nanomaterials for highly efficient CO2 photoreduction and photocatalytic hydrogen evolution

, , , ORCID Icon, , ORCID Icon & show all
Pages 866-894 | Received 14 Oct 2022, Accepted 13 Nov 2022, Published online: 08 Dec 2022

References

  • Gupta A, Paul A. Carbon capture and sequestration potential in India: a comprehensive review. Energy Procedia. 2019;160:848–855.
  • Kumar P, Laishram D, Sharma RK, et al. Boosting photocatalytic activity using carbon nitride based 2D/2D van der Waals heterojunctions. Chem Mater. 2021;33(23):9012–9092. DOI:10.1021/acs.chemmater.1c03166
  • Draper AM, Weissburg MJ. Impacts of global warming and elevated CO2 on sensory behavior in predator-prey interactions: a review and synthesis. Front Ecol Evol. 2019;7:72.
  • Singh G, Kim IY, Lakhi KS, et al. Heteroatom functionalized activated porous biocarbons and their excellent performance for CO2 capture at high pressure. J Mater Chem A. 2017;5(40):21196–21204. DOI:10.1039/C7TA07186H
  • Pachauri R, Meyer L. Climate change 2014: synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change. 2014.
  • Peter SC. Reduction of CO2 to chemicals and fuels: a solution to global warming and energy crisis. ACS Energy Lett. 2018;3(7):1557–1561.
  • Lakhi K, Cha W, Joseph S, et al. Cage type mesoporous carbon nitride with large mesopores for CO2 capture. CatalToday. 2015;243:209–217.
  • Singh G, Lee J, Bahadur R, et al. Highly graphitized porous biocarbon nanosheets with tunable micro-meso interfaces and enhanced layer spacing for CO2 capture and LIBs. Chem Eng J. 2022;433:134464.
  • Ramadass K, Sathish CI, Singh G, et al. Morphologically tunable nanoarchitectonics of mixed kaolin-halloysite derived nitrogen-doped activated nanoporous carbons for supercapacitor and CO2 capture applications. Carbon. 2022;192:133–144.
  • Sathish C, Kothandam G, Selvarajan P, et al. Ordered mesoporous boron carbon nitrides with tunable mesopore nanoarchitectonics for energy storage and CO2 adsorption properties. Adv Sci. 2022;9(16):2105603. DOI:10.1002/advs.202105603
  • Ismail IS, Singh G, Smith P, et al. Oxygen functionalized porous activated biocarbons with high surface area derived from grape marc for enhanced capture of CO2 at elevated-pressure. Carbon. 2020;160:113–124.
  • Singh G, Bahadur R, Ruban AM, et al. Synthesis of functionalized nanoporous biocarbons with high surface area for CO2 capture and supercapacitor applications. Green Chem. 2021;23(15):5571–5583. DOI:10.1039/D1GC01376A
  • Singh G, Maria Ruban A, Geng X, et al. Recognizing the potential of K-salts, apart from KOH, for generating porous carbons using chemical activation. Chem Eng J. 2023;451:139045.
  • Kanniche M, Gros-Bonnivard R, Jaud P, et al. Pre-combustion, post-combustion and oxy-combustion in thermal power plant for CO2 capture. Appl Therm Eng. 2010;30(1):53–62. DOI:10.1016/j.applthermaleng.2009.05.005
  • Singh G, Lee J, Karakoti A, et al. Emerging trends in porous materials for CO2 capture and conversion. Chemical Society Rev. 2020;49(13):4360–4404.
  • Su T, Shao Q, Qin Z, et al. Role of interfaces in two-dimensional photocatalyst for water splitting. ACS Catal. 2018;8(3):2253–2276. DOI:10.1021/acscatal.7b03437
  • Prasad C, Tang H, Liu QQ, et al. An overview of semiconductors/layered double hydroxides composites: properties, synthesis, photocatalytic and photoelectrochemical applications. J Mol Liq. 2019;289:111114.
  • Singh AK, Montoya JH, Gregoire JM, et al. Robust and synthesizable photocatalysts for CO2 reduction: a data-driven materials discovery. Nat Commun. 2019;10(1):1–9. DOI:10.1038/s41467-019-08356-1
  • Li X, Yu J, Jaroniec M. Hierarchical photocatalysts. Chem Soc Rev. 2016;45(9):2603–2636.
  • Kayfeci M, Keçebaş A, Bayat M. Solar hydrogen. Elsevier; 2019. Chapter 3, Hydrogen production; p. 45–83.
  • Gujral HS, Singh G, Baskar AV, et al. Metal nitride-based nanostructures for electrochemical and photocatalytic hydrogen production. Sci Technol Adv Mater. 2022;23(1):76–119. DOI:10.1080/14686996.2022.2029686
  • Jenck JF, Agterberg F, Droescher MJ. Products and processes for a sustainable chemical industry: a review of achievements and prospects. Green Chem. 2004;6(11):544–556.
  • Hydrogen Industry application: past, present and future. Available from: https://wha-international.com/hydrogen-in-industry/
  • International Energy Agency Report. The future of hydrogen 2019. Available from: https://www.iea.org/fuels-and-technologies/hydrogen
  • Basheer AA, Ali I. Water photo splitting for green hydrogen energy by green nanoparticles. Int J Hydrogen Energy. 2019;44(23):11564–11573.
  • Kamat PV. Manipulation of charge transfer across semiconductor interface. A criterion that cannot be ignored in photocatalyst design. J Phys Chem Lett. 2012;3(5):663–672.
  • Ganguly P, Harb M, Cao Z, et al. 2D nanomaterials for photocatalytic hydrogen production. ACS Energy Lett. 2019;4(7):1687–1709. DOI:10.1021/acsenergylett.9b00940
  • Wang X, Wang F, Sang Y, et al. Full‐spectrum solar‐light‐activated photocatalysts for light–chemical energy conversion. Adv Energy Mater. 2017;7(23):1700473. DOI:10.1002/aenm.201700473
  • LeValley TL, Richard AR, Fan M. The progress in water gas shift and steam reforming hydrogen production technologies – a review. Int J Hydrogen Energy. 2014;39(30):16983–17000.
  • Sengodan S, Lan R, Humphreys J, et al. Advances in reforming and partial oxidation of hydrocarbons for hydrogen production and fuel cell applications. Renew Sust Energ Rev. 2018;82:761–780.
  • Rabenstein G, Hacker V. Hydrogen for fuel cells from ethanol by steam-reforming, partial-oxidation and combined auto-thermal reforming: a thermodynamic analysis. J Power Sources. 2008;185(2):1293–1304.
  • Chaubey R, Sahu S, James OO, et al. A review on development of industrial processes and emerging techniques for production of hydrogen from renewable and sustainable sources. Renew Sust Energ Rev. 2013;23:443–462.
  • Łukajtis R, Hołowacz I, Kucharska K, et al. Hydrogen production from biomass using dark fermentation. Renew Sust Energ Rev. 2018;91:665–694.
  • Akhlaghi N, Najafpour-Darzi G. A comprehensive review on biological hydrogen production. Int J Hydrogen Energy. 2020;45(43):22492–22512.
  • Cao L, Iris K, Xiong X, et al. Biorenewable hydrogen production through biomass gasification: a review and future prospects. Environ Res. 2020;186:109547.
  • Nikolaidis P, Poullikkas A. A comparative overview of hydrogen production processes. Renew Sust Energ Rev. 2017;67:597–611.
  • Hosseini SE, Wahid MA. Hydrogen from solar energy, a clean energy carrier from a sustainable source of energy. Int J Energy Res. 2020;44(6):4110–4131.
  • Burton N, Padilla R, Rose A, et al. Increasing the efficiency of hydrogen production from solar powered water electrolysis. Renew Sust Energ Rev. 2021;135:110255.
  • Rönsch S, Schneider J, Matthischke S, et al. Review on methanation – from fundamentals to current projects. Fuel. 2016;166:276–296.
  • Muscatello ESM AC. Mars in situ resource utilization technology evaluation. 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition; 2012, Nashville, TN.
  • Wagner A, Sahm CD, Reisner E. Towards molecular understanding of local chemical environment effects in electro-and photocatalytic CO2 reduction. Nat Catal. 2020;3(10):775–786.
  • Burkart MD, Hazari N, Tway CL, et al. Opportunities and challenges for catalysis in carbon dioxide utilization. ACS Catal. 2019;9(9):7937–7956. DOI:10.1021/acscatal.9b02113
  • Fu J, Wang S, Wang Z, et al. Graphitic carbon nitride based single-atom photocatalysts. Front Phys. 2020;15(3):1–14. DOI:10.1007/s11467-019-0950-z
  • Ran J, Jaroniec M, Qiao SZ. Cocatalysts in semiconductor‐based photocatalytic CO2 reduction: achievements, challenges, and opportunities. Adv Mater. 2018;30(7):1704649.
  • Bahadori E, Tripodi A, Villa A, et al. High pressure photoreduction of CO2: effect of catalyst formulation, hole scavenger addition and operating conditions. Catalysts. 2018;8(10):430. DOI:10.3390/catal8100430
  • Jiao X, Zheng K, Hu Z, et al. Broad-spectral-response photocatalysts for CO2 reduction. ACS Cent Sci. 2020;6(5):653–660. DOI:10.1021/acscentsci.0c00325
  • Zhou R, Guzman MI. CO2 reduction under periodic illumination of ZnS. J Phys Chem C. 2014;118(22):11649–11656.
  • Ogata T, Yanagida S, Brunschwig BS, et al. Mechanistic and kinetic studies of cobalt macrocycles in a photochemical CO2 reduction system: evidence of Co-CO2 adducts as intermediates. J Am Chem Soc. 1995;117(25):6708–6716. DOI:10.1021/ja00130a009
  • Mishra A, Basu S, Shetti NP, et al. Nanoscale Materials in Water Purification. Elsevier; 2019.Chapter 37, Photocatalysis of graphene and carbon nitride-based functional carbon quantum dots; p. 759–781.
  • Hao X, Jin Z, Xu J, et al. Functionalization of TiO2 with graphene quantum dots for efficient photocatalytic hydrogen evolution. Superlattices Microstruct. 2016;94:237–244.
  • Gliniak J, Lin JH, Chen YT, et al. Sulfur‐doped graphene oxide quantum dots as photocatalysts for hydrogen generation in the aqueous phase. ChemSuschem. 2017;10(16):3260–3267. DOI:10.1002/cssc.201700910
  • Sorcar S, Hwang Y, Grimes CA, et al. Highly enhanced and stable activity of defect-induced titania nanoparticles for solar light-driven CO2 reduction into CH4. Mater Today. 2017;20(9):507–515. DOI:10.1016/j.mattod.2017.09.005
  • Saw K, Aznan N, Yam F, et al. New insights on the Burstein-Moss shift and band gap narrowing in indium-doped zinc oxide thin films. PLoS One. 2015;10(10):e0141180. DOI:10.1371/journal.pone.0141180
  • Shen Z, Xia Q, Li Y, et al. Adsorption-enhanced nitrogen-doped mesoporous CeO2 as an efficient visible-light-driven catalyst for CO2 photoreduction. J CO2 Util. 2020;39:101176.
  • Sayed M, Xu F, Kuang P, et al. Sustained CO2-photoreduction activity and high selectivity over Mn, C-codoped ZnO core-triple shell hollow spheres. Nat Commun. 2021;12(1):1–10. DOI:10.1038/s41467-021-25007-6
  • Nematollahi R, Ghotbi C, Khorasheh F, et al. Ni-Bi co-doped TiO2 as highly visible light response nano-photocatalyst for CO2 photo-reduction in a batch photo-reactor. J CO2 Util. 2020;41:101289.
  • Moradi M, Khorasheh F, Larimi A. Pt nanoparticles decorated Bi-doped TiO2 as an efficient photocatalyst for CO2 photo-reduction into CH4. Solar Energy. 2020;211:100–110.
  • Fu J, Liu K, Jiang K, et al. Graphitic carbon nitride with dopant induced charge localization for enhanced photoreduction of CO2 to CH4. Adv Sci. 2019;6(18):1900796. DOI:10.1002/advs.201900796
  • Li R, Zhang W, Zhou K. Metal–organic‐framework‐based catalysts for photoreduction of CO2. Adv Mater. 2018;30(35):1705512.
  • Lais A, Gondal M, Dastageer M, et al. Experimental parameters affecting the photocatalytic reduction performance of CO2 to methanol: a review. Int J Energy Res. 2018;42(6):2031–2049. DOI:10.1002/er.3965
  • She X, Liu L, Ji H, et al. Template-free synthesis of 2D porous ultrathin nonmetal-doped g-C3N4 nanosheets with highly efficient photocatalytic H2 evolution from water under visible light. Appl Catal B Environ. 2016;187:144–153.
  • Fu J, Jiang K, Qiu X, et al. Product selectivity of photocatalytic CO2 reduction reactions. Mater Today. 2020;32:222–243.
  • Tahir M, Amin NS. Recycling of carbon dioxide to renewable fuels by photocatalysis: prospects and challenges. Renew Sust Energ Rev. 2013;25:560–579.
  • Omadoko O, Scott D, Hickman R, et al. Simple photoreduction of carbon dioxide to formic acid and true quantum yield. Phys Chem Chem Phys. 2020;22(8):4632–4639. DOI:10.1039/C9CP06707H
  • Neaţu Ş, Maciá-Agulló JA, Garcia H. Solar light photocatalytic CO2 reduction: general considerations and selected bench-mark photocatalysts. Int J Mol Sci. 2014;15(4):5246–5262.
  • Gonell F, Puga AV, Julian-Lopez B, et al. Copper-doped titania photocatalysts for simultaneous reduction of CO2 and production of H2 from aqueous sulfide. Appl Catal B Environ. 2016;180:263–270.
  • Zhang Q, Lin C-F, Jing YH, et al. Photocatalytic reduction of carbon dioxide to methanol and formic acid by graphene-TiO2. J Air Waste Manage Assoc. 2014;64(5):578–585. DOI:10.1080/10962247.2013.875958
  • Monteiro MC, Philips MF, Schouten KJP, et al. Efficiency and selectivity of CO2 reduction to CO on gold gas diffusion electrodes in acidic media. Nat Commun. 2021;12(1):1–7. DOI:10.1038/s41467-021-24936-6
  • Bhattacharyya K, Mane GP, Rane V, et al. Selective CO2 photoreduction with Cu-doped TiO2 photocatalyst: delineating the crucial role of Cu-oxidation state and oxygen vacancies. J Phys Chem C. 2021;125(3):1793–1810. DOI:10.1021/acs.jpcc.0c08441
  • Thompson W, Fernandez ES, Maroto-Valer M. Probability Langmuir-Hinshelwood based CO2 photoreduction kinetic models. Chem Eng J. 2020;384:123356.
  • Hossain MM, Raupp GB. Polychromatic radiation field model for a honeycomb monolith photocatalytic reactor. Chem Eng Sci. 1999;54(15–16):3027–3034.
  • Wang Z, Liu J, Dai Y, et al. CFD modeling of a UV-LED photocatalytic odor abatement process in a continuous reactor. J Hazard Mater. 2012;215:25–31.
  • Liu S, Zhao Z, Wang Z. Photocatalytic reduction of carbon dioxide using sol–gel derived titania-supported CoPc catalysts. Photochem Photobiol Sci. 2007;6(6):695–700.
  • Gattrell M, Gupta N, Co A. A review of the aqueous electrochemical reduction of CO2 to hydrocarbons at copper. J Electroanal Chem. 2006;594(1):1–19.
  • Habisreutinger SN, Schmidt‐mende L, Stolarczyk JK. Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angewandte Chemie. 2013;52(29):7372–7408.
  • Wang L, Chen W, Zhang D, et al. Surface strategies for catalytic CO2 reduction: from two-dimensional materials to nanoclusters to single atoms. Chem Soc Rev. 2019;48(21):5310–5349. DOI:10.1039/C9CS00163H
  • Chang X, Wang T, Gong J. CO2 photo-reduction: insights into CO2 activation and reaction on surfaces of photocatalysts. Energy Environ Sci. 2016;9(7):2177–2196.
  • Freund H-J, Roberts MW. Surface chemistry of carbon dioxide. Surf Sci Rep. 1996;25(8):225–273.
  • Mori K, Yamashita H, Anpo M. Photocatalytic reduction of CO2 with H2O on various titanium oxide photocatalysts. RSC Adv. 2012;2(8):3165–3172.
  • Shkrob IA, Marin TW, He H, et al. Photoredox reactions and the catalytic cycle for carbon dioxide fixation and methanogenesis on metal oxides. J Phys Chem C. 2012;116(17):9450–9460. DOI:10.1021/jp300122v
  • Pougin A, Dilla M, Strunk J. Identification and exclusion of intermediates of photocatalytic CO2 reduction on TiO2 under conditions of highest purity. Phys Chem Chem Phys. 2016;18(16):10809–10817.
  • Civiš S, Knížek A, Ivanek O, et al. The origin of methane and biomolecules from a CO2 cycle on terrestrial planets. Nat Astron. 2017;1(10):721–726. DOI:10.1038/s41550-017-0260-8
  • Ji Y, Luo Y. New mechanism for photocatalytic reduction of CO2 on the anatase TiO2 (101) surface: the essential role of oxygen vacancy. J Am Chem Soc. 2016;138(49):15896–15902.
  • Lee CH, Lee SU. Electrocatalysts for fuel cells and hydrogen evolution-theory to design. London: IntechOpen; 2018. Theoretical basis of electrocatalysis; p. 13.
  • Li C, Baek J-B. Recent advances in noble metal (Pt, Ru, and Ir)-based electrocatalysts for efficient hydrogen evolution reaction. ACS Omega. 2019;5(1):31–40.
  • Jiang L, Wang Y, Feng C. Application of photocatalytic technology in environmental safety. Procedia Eng. 2012;45:993–997.
  • Ohno T, Sarukawa K, Tokieda K, et al. Morphology of a TiO2 photocatalyst (Degussa, P-25) consisting of anatase and rutile crystalline phases. J Catal. 2001;203(1):82–86. DOI:10.1006/jcat.2001.3316
  • Jing L, Li S, Song S, et al. Investigation on the electron transfer between anatase and rutile in nano-sized TiO2 by means of surface photovoltage technique and its effects on the photocatalytic activity. Sol Energy Mater Sol Cells. 2008;92(9):1030–1036. DOI:10.1016/j.solmat.2008.03.003
  • Ikram M, Hassan J, Raza A, et al. Photocatalytic and bactericidal properties and molecular docking analysis of TiO2 nanoparticles conjugated with Zr for environmental remediation. RSC Adv. 2020;10(50):30007–30024. DOI:10.1039/D0RA05862A
  • Dette C, Pérez-Osorio MA, Kley CS, et al. TiO2 anatase with a bandgap in the visible region. Nano Lett. 2014;14(11):6533–6538. DOI:10.1021/nl503131s
  • Dong H, Zeng G, Tang L, et al. An overview on limitations of TiO2-based particles for photocatalytic degradation of organic pollutants and the corresponding countermeasures. Water Res. 2015;79:128–146.
  • Bhattacharyya A, Kawi S, Ray M. Photocatalytic degradation of orange-II by TiO2 catalysts supported on adsorbents. CatalToday. 2004;98(3):431–439.
  • Maeda K, Lu D, Domen K. Direct water splitting into hydrogen and oxygen under visible light by using modified TaON photocatalysts with d0 electronic configuration. Chem–A Eur J. 2013;19(16):4986–4991.
  • Sarkar A, Gracia-Espino E, Wågberg T, et al. Photocatalytic reduction of CO2 with H2O over modified TiO2 nanofibers: understanding the reduction pathway. Nano Res. 2016;9(7):1956–1968. DOI:10.1007/s12274-016-1087-9
  • Ikeue K, Yamashita H, Anpo M, et al. Photocatalytic reduction of CO2 with H2O on Ti− β zeolite photocatalysts: effect of the hydrophobic and hydrophilic properties. J Phys Chem B. 2001;105(35):8350–8355. DOI:10.1021/jp010885g
  • Anpo M. Photocatalytic reduction of CO2 with H2O on highly dispersed Ti-oxide catalysts as a model of artificial photosynthesis. J CO2 Util. 2013;1:8–17.
  • Tseng I-H, Chang W-C, Wu JC. Photoreduction of CO2 using sol–gel derived titania and titania-supported copper catalysts. Appl Catal B Environ. 2002;37(1):37–48.
  • Li X, Zhuang Z, Li W, et al. Photocatalytic reduction of CO2 over noble metal-loaded and nitrogen-doped mesoporous TiO2. Appl Catal A Gen. 2012;429:31–38.
  • Michaelson HB. The work function of the elements and its periodicity. J Appl Phys. 1977;48(11):4729–4733.
  • Low J, Cheng B, Yu J. Surface modification and enhanced photocatalytic CO2 reduction performance of TiO2: a review. Appl Surface Sci. 2017;392:658–686.
  • Xie S, Wang Y, Zhang Q, et al. MgO-and Pt-promoted TiO2 as an efficient photocatalyst for the preferential reduction of carbon dioxide in the presence of water. ACS Catal. 2014;4(10):3644–3653. DOI:10.1021/cs500648p
  • Li K, An X, Park KH, et al. A critical review of CO2 photoconversion: catalysts and reactors. CatalToday. 2014;224:3–12.
  • Li Y, Wang W-N, Zhan Z, et al. Photocatalytic reduction of CO2 with H2O on mesoporous silica supported Cu/TiO2 catalysts. Appl Catal B Environ. 2010;100(1–2):386–392. DOI:10.1016/j.apcatb.2010.08.015
  • Tseng I-H, Wu JC, Chou H-Y. Effects of sol–gel procedures on the photocatalysis of Cu/TiO2 in CO2 photoreduction. J Catal. 2004;221(2):432–440.
  • Roy SC, Varghese OK, Paulose M, et al. Toward solar fuels: photocatalytic conversion of carbon dioxide to hydrocarbons. ACS Nano. 2010;4(3):1259–1278. DOI:10.1021/nn9015423
  • Liu Y, Zhou S, Li J, et al. Photocatalytic reduction of CO2 with water vapor on surface La-modified TiO2 nanoparticles with enhanced CH4 selectivity. Appl Catal B Environ. 2015;168:125–131.
  • Gao L, Li Y, Ren J, et al. Passivation of defect states in anatase TiO2 hollow spheres with Mg doping: realizing efficient photocatalytic overall water splitting. Appl Catal B Environ. 2017;202:127–133.
  • Jakob M, Levanon H, Kamat PV. Charge distribution between UV-irradiated TiO2 and gold nanoparticles: determination of shift in the Fermi level. Nano Lett. 2003;3(3):353–358.
  • Ortiz AL, Zaragoza MM, Gutiérrez JS, et al. Silver oxidation state effect on the photocatalytic properties of Ag doped TiO2 for hydrogen production under visible light. Int J Hydrogen Energy. 2015;40(48):17308–17315. DOI:10.1016/j.ijhydene.2015.09.058
  • Yan B, Liu D, Feng X, et al. Ru species supported on MOF‐derived N‐doped TiO2/C hybrids as efficient electrocatalytic/photocatalytic hydrogen evolution reaction catalysts. Adv Funct Mater. 2020;30(31):2003007. DOI:10.1002/adfm.202003007
  • Wang J, Shen Y, Liu S, et al. Single 2D MXene precursor-derived TiO2 nanosheets with a uniform decoration of amorphous carbon for enhancing photocatalytic water splitting. Appl Catal B Environ. 2020;270(5):118885.
  • Hu H, Qian D, Lin P, et al. Oxygen vacancies mediated in-situ growth of noble-metal (Ag, Au, Pt) nanoparticles on 3D TiO2 hierarchical spheres for efficient photocatalytic hydrogen evolution from water splitting. Int J Hydrogen Energy. 2020;45(1):629–639. DOI:10.1016/j.ijhydene.2019.10.231
  • M-C W, P-Y W, Lin T-H, et al. Photocatalytic performance of Cu-doped TiO2 nanofibers treated by the hydrothermal synthesis and air-thermal treatment. Appl Surface Sci. 2018;430:390–398.
  • Mor GK, Varghese OK, Wilke RH, et al. P-Type Cu− Ti− O nanotube arrays and their use in self-biased heterojunction photoelectrochemical diodes for hydrogen generation. Nano Lett. 2008;8(7):1906–1911. DOI:10.1021/nl080572y
  • Wu J, Huang Y, Ye W, et al. CO2 reduction: from the electrochemical to photochemical approach. Adv Sci. 2017;4(11):1700194. DOI:10.1002/advs.201700194
  • Luo X, Guo Y, Ding F, et al. Significant improvements in CO2 capture by pyridine‐containing anion‐functionalized ionic liquids through multiple‐site cooperative interactions. Angew Chem. 2014;126(27):7173–7177. DOI:10.1002/ange.201400957
  • Liu Q, Zhou Y, Kou J, et al. High-yield synthesis of ultralong and ultrathin Zn2GeO4 nanoribbons toward improved photocatalytic reduction of CO2 into renewable hydrocarbon fuel. J Am Chem Soc. 2010;132(41):14385–14387. DOI:10.1021/ja1068596
  • Yu J, Jin J, Cheng B, et al. A noble metal-free reduced graphene oxide–CDs nanorod composite for the enhanced visible-light photocatalytic reduction of CO2 to solar fuel. J Mater Chem A. 2014;2(10):3407–3416. DOI:10.1039/c3ta14493c
  • An X, Li K, Tang J. Cu2o/Reduced graphene oxide composites for the photocatalytic conversion of CO2. ChemSuschem. 2014;7(4):1086–1093.
  • Ouyang C, Wang X, Wang C, et al. Hierarchically porous Ni3S2 nanorod array foam as highly efficient electrocatalyst for hydrogen evolution reaction and oxygen evolution reaction. Electrochimica Acta. 2015;174:297–301.
  • Chung DY, Han JW, Lim D-H, et al. Structure dependent active sites of Ni-xS-y as electrocatalysts for hydrogen evolution reaction. Nanoscale. 2015;7(12):5157–5163. DOI:10.1039/C4NR07648F
  • Kukunuri S, Krishnan MR, Sampath S. The effect of structural dimensionality on the electrocatalytic properties of the nickel selenide phase. Phys Chem Chem Phys. 2015;17(36):23448–23459.
  • Tang C, Xie L, Sun X, et al. Highly efficient electrochemical hydrogen evolution based on nickel diselenide nanowall film. Nanotechnology. 2016;27(20):20LT02. DOI:10.1088/0957-4484/27/20/20LT02
  • Bhat KS, Nagaraja H. Recent trends and insights in nickel chalcogenide nanostructures for water-splitting reactions. Mater Res Innovations. 2021;25(1):29–52.
  • Chia X, Sofer Z, Luxa J, et al. Unconventionally layered CoTe2 and NiTe2 as electrocatalysts for hydrogen evolution. Chem–A Eur J. 2017;23(48):11719–11726. DOI:10.1002/chem.201702753
  • Ge Y, Gao S-P, Dong P, et al. Insight into the hydrogen evolution reaction of nickel dichalcogenide nanosheets: activities related to non-metal ligands. Nanoscale. 2017;9(17):5538–5544. DOI:10.1039/C6NR09977G
  • Dong G, Zhang L. Porous structure dependent photoreactivity of graphitic carbon nitride under visible light. J Mater Chem. 2012;22(3):1160–1166.
  • Ovcharov M, Shcherban N, Filonenko S, et al. Hard template synthesis of porous carbon nitride materials with improved efficiency for photocatalytic CO2 utilization. Mater Sci Eng B. 2015;202:1–7.
  • Wang Z, Jiao X, Chen D, et al. Porous Copper/Zinc bimetallic oxides derived from MOFs for efficient photocatalytic reduction of CO2 to methanol. Catalysts. 2020;10(10):1127. DOI:10.3390/catal10101127
  • Ong W-J, Tan L-L, Chai S-P, et al. Graphene oxide as a structure-directing agent for the two-dimensional interface engineering of sandwich-like graphene–g C3N4 hybrid nanostructures with enhanced visible-light photoreduction of CO2 to methane. Chem Comm. 2015;51(5):858–861. DOI:10.1039/C4CC08996K
  • Shcherban ND, Filonenko SM, Ovcharov ML, et al. Simple method for preparing of sulfur–doped graphitic carbon nitride with superior activity in CO2 photoreduction. ChemistrySelect. 2016;1(15):4987–4993. DOI:10.1002/slct.201601283
  • Shen M, Zhang L, Wang M, et al. Carbon-vacancy modified graphitic carbon nitride: enhanced CO2 photocatalytic reduction performance and mechanism probing. J Mater Chem A. 2019;7(4):1556–1563. DOI:10.1039/C8TA09302D
  • Zhu X, Ji H, Yi J, et al. A specifically exposed cobalt oxide/carbon nitride 2D heterostructure for carbon dioxide photoreduction. Ind Eng Chem Res. 2018;57(51):17394–17400. DOI:10.1021/acs.iecr.8b04123
  • Zeng S, Kar P, Thakur UK, et al. A review on photocatalytic CO2 reduction using perovskite oxide nanomaterials. Nanotechnology. 2018;29(5):052001. DOI:10.1088/1361-6528/aa9fb1
  • Guo Q, Fu L, Yan T, et al. Improved photocatalytic activity of porous ZnO nanosheets by thermal deposition graphene-like g-C3N4 for CO2 reduction with H2O vapor. Appl Surface Sci. 2020;509:144773.
  • Wang S, Zhan J, Chen K, et al. Potassium-doped g-C3N4 achieving efficient visible-light-driven CO2 reduction. ACS Sustainable Chem Eng. 2020;8(22):8214–8222. DOI:10.1021/acssuschemeng.0c01151
  • Zhang H, Tang Y, Liu Z, et al. Study on optical properties of alkali metal doped g-C3N4 and their photocatalytic activity for reduction of CO2. Chem Phys Lett. 2020;751:137467.
  • Shi G, Yang L, Liu Z, et al. Photocatalytic reduction of CO2 to CO over copper decorated g-C3N4 nanosheets with enhanced yield and selectivity. Appl Surface Sci. 2018;427:1165–1173.
  • Tonda S, Kumar S, Kandula S, et al. Fe-doped and-mediated graphitic carbon nitride nanosheets for enhanced photocatalytic performance under natural sunlight. J Mater Chem A. 2014;2(19):6772–6780. DOI:10.1039/c3ta15358d
  • Qamar MA, Shahid S, Javed M, et al. Highly efficient g-C3N4/Cr-ZnO nanocomposites with superior photocatalytic and antibacterial activity. J Photochem Photobiol A. 2020;401:112776.
  • Ong W-J, Tan L-L, Chai S-P, et al. Heterojunction engineering of graphitic carbon nitride (gC3N4) via Pt loading with improved daylight-induced photocatalytic reduction of carbon dioxide to methane. Dalton Trans. 2015;44(3):1249–1257. DOI:10.1039/C4DT02940B
  • Li S, Yan S, Xia Y, et al. Oxidative reactivity enhancement for soot combustion catalysts by co-doping silver and manganese in ceria. Appl Catal A Gen. 2019;570:299–307.
  • Sun X, Li M, Ren S, et al. Zeolitic imidazolate framework-cellulose nanofiber hybrid membrane as Li-Ion battery separator: basic membrane property and battery performance. J Power Sources. 2020;454:227878.
  • Cao S, Li Y, Zhu B, et al. Facet effect of Pd cocatalyst on photocatalytic CO2 reduction over g-C3N4. J Catal. 2017;349:208–217.
  • Karuppasamy K, Jothi VR, Vikraman D, et al. Metal-organic framework derived NiMo polyhedron as an efficient hydrogen evolution reaction electrocatalyst. Appl Surface Sci. 2019;478:916–923.
  • Peters AW, Li Z, Farha OK, et al. Toward inexpensive photocatalytic hydrogen evolution: a nickel sulfide catalyst supported on a high-stability metal–organic framework. ACS Appl Mater Interfaces. 2016;8(32):20675–20681. DOI:10.1021/acsami.6b04729
  • Do HH, Van Le Q, Tekalgne MA, et al. Metal–organic framework-derived MoSx composites as efficient electrocatalysts for hydrogen evolution reaction. J Alloys Compd. 2021;852:156952.
  • Li Y-W, Wu Q, Ma R-C, et al. A Co-MOF-derived Co9S8@ NS-C electrocatalyst for efficient hydrogen evolution reaction. RSC Adv. 2021;11(11):5947–5957. DOI:10.1039/D0RA10864B
  • Verma P, Stewart JD, Raja R. Recent advances in photocatalytic CO2 utilisation over multifunctional metal–organic frameworks. Catalysts. 2020;10(10):1176.
  • Yang X-F, Qiao B, Li J, et al. Acc Chem Res. 2013;46:1740–1748. DOI:10.1021/ar300361m
  • Ren S, Yu Q, Yu X, et al. Graphene-supported metal single-atom catalysts: a concise review. Sci China Mater. 2020;63(6):903–920.
  • Lei Y, Mehmood F, Lee S, et al. Increased silver activity for direct propylene epoxidation via subnanometer size effects. Science. 2010;328(5975):224–228. DOI:10.1126/science.1185200
  • Yan H, Cheng H, Yi H, et al. Single-atom Pd1/graphene catalyst achieved by atomic layer deposition: remarkable performance in selective hydrogenation of 1, 3-butadiene. J Am Chem Soc. 2015;137(33):10484–10487. DOI:10.1021/jacs.5b06485
  • Gao G, Jiao Y, Waclawik ER, et al. Single atom (Pd/Pt) supported on graphitic carbon nitride as an efficient photocatalyst for visible-light reduction of carbon dioxide. J Am Chem Soc. 2016;138(19):6292–6297. DOI:10.1021/jacs.6b02692
  • Zhang H, Wei J, Dong J, et al. Efficient visible‐light‐driven carbon dioxide reduction by a single‐atom implanted metal–organic framework. Angew Chem. 2016;128(46):14522–14526. DOI:10.1002/ange.201608597
  • Huang P, Huang J, Pantovich SA, et al. Selective CO2 reduction catalyzed by single cobalt sites on carbon nitride under visible-light irradiation. J Am Chem Soc. 2018;140(47):16042–16047. DOI:10.1021/jacs.8b10380
  • Fu Q, Saltsburg H, Flytzani-Stephanopoulos M. Active nonmetallic Au and Pt species on ceria-based water-gas shift catalysts. Science. 2003;301(5635):935–938.
  • Qiao B, Wang A, Yang X, et al. Single-atom catalysis of CO oxidation using Pt-1/feo x. Nat Chem. 2011;3(8):634–641. DOI:10.1038/nchem.1095
  • Chen W, Pei J, He CT, et al. Single tungsten atoms supported on MOF‐derived N‐doped carbon for robust electrochemical hydrogen evolution. Adv Mater. 2018;30(30):1800396. DOI:10.1002/adma.201800396
  • Qiu HJ, Ito Y, Cong W, et al. Nanoporous graphene with single‐atom nickel dopants: an efficient and stable catalyst for electrochemical hydrogen production. Angewandte Chemie. 2015;54(47):14031–14035. DOI:10.1002/anie.201507381
  • Ji S, Qu Y, Wang T, et al. Rare‐earth single erbium atoms for enhanced photocatalytic CO2 reduction. Angewandte Chemie. 2020;59(26):10651–10657. DOI:10.1002/anie.202003623
  • Mane GP, Dhawale DS, Anand C, et al. Selective sensing performance of mesoporous carbon nitride with a highly ordered porous structure prepared from 3-amino-1,2,4-triazine. J Mater Chem A. 2013;1(8):2913–2920. DOI:10.1039/c2ta01215d
  • Talapaneni SN, Singh G, Kim IY, et al. Nanostructured carbon nitrides for CO2 capture and conversion. Adv Mater. 2020;32(18):1904635. DOI:10.1002/adma.201904635
  • Kim S, Singh G, Sathish C, et al. Tailoring the pore size, basicity, and binding energy of mesoporous C3N5 for CO2 capture and conversion. Chem – Asian J. 2021;16(23):3999–4005. DOI:10.1002/asia.202101069
  • Park D-H, Lakhi KS, Ramadass K, et al. Energy efficient synthesis of ordered mesoporous carbon nitrides with a high nitrogen content and enhanced CO2 capture capacity. Chem Eur J. 2017;23(45):10753–10757. DOI:10.1002/chem.201702566
  • Yang J-H, Kim S, Kim IY, et al. Highly enhanced photocatalytic hydrogen evolution activity of graphitic carbon nitride with 3D connected mesoporous structure. Sustainable Mater Technol. 2020;25:e00184.
  • Lin L, Yu Z, Wang X. Crystalline carbon nitride semiconductors for photocatalytic water splitting. Angew Chem. 2019;131(19):6225–6236.
  • Dias EM, Christoforidis KC, Francas L, et al. Tuning thermally treated graphitic carbon nitride for H2 evolution and CO2 photoreduction: the effects of material properties and mid-gap states. ACS Appl Energy Mater. 2018;1(11):6524–6534. DOI:10.1021/acsaem.8b01441
  • Talapaneni SN, Mane GP, Mano A, et al. Synthesis of nitrogen‐rich mesoporous carbon nitride with tunable pores, band gaps and nitrogen content from a single aminoguanidine precursor. ChemSuschem. 2012;5(4):700–708. DOI:10.1002/cssc.201100626
  • Ni D, Zhang Y, Shen Y, et al. Promoting condensation kinetics of polymeric carbon nitride for enhanced photocatalytic activities. Chin Chem Lett. 2020;31(1):115–118.
  • Yue B, Li Q, Iwai H, et al. Hydrogen production using zinc-doped carbon nitride catalyst irradiated with visible light. Sci Technol Adv Mater. 2011;12(3):034401. DOI:10.1088/1468-6996/12/3/034401
  • Zhang L, Ding N, Hashimoto M, et al. Sodium-doped carbon nitride nanotubes for efficient visible light-driven hydrogen production. Nano Res. 2018;11(4):2295–2309. DOI:10.1007/s12274-017-1853-3
  • Gao L-F, Wen T, Xu J-Y, et al. Iron-doped carbon nitride-type polymers as homogeneous organocatalysts for visible light-driven hydrogen evolution. ACS Appl Mater Interfaces. 2016;8(1):617–624. DOI:10.1021/acsami.5b09684
  • Guo S, Deng Z, Li M, et al. Phosphorus‐doped carbon nitride tubes with a layered micro‐nanostructure for enhanced visible‐light photocatalytic hydrogen evolution. Angew Chem. 2016;128(5):1862–1866. DOI:10.1002/ange.201508505
  • Liu Y, Zhang X, Chen Z, et al. Electrocatalytic reduction of nitrogen on FeAg/Si for ammonia synthesis: a simple strategy for continuous regulation of faradaic efficiency by controlling H+ ions transfer rate. Appl Catal B Environ. 2021;283:119606.
  • Zhu Y, Marianov A, Xu H, et al. Bimetallic Ag–Cu supported on graphitic carbon nitride nanotubes for improved visible-light photocatalytic hydrogen production. ACS Appl Mater Interfaces. 2018;10(11):9468–9477. DOI:10.1021/acsami.8b00393
  • Mane GP, Talapaneni SN, Lakhi KS, et al. Highly ordered nitrogen‐rich mesoporous carbon nitrides and their superior performance for sensing and photocatalytic hydrogen generation. Angewandte Chemie. 2017;56(29):8481–8485. DOI:10.1002/anie.201702386
  • Talapaneni SN, Mane GP, Park D-H, et al. Diaminotetrazine based mesoporous C3N6 with a well-ordered 3D cubic structure and its excellent photocatalytic performance for hydrogen evolution. J Mater Chem A. 2017;5(34):18183–18192. DOI:10.1039/C7TA04041E
  • Kim IY, Kim S, Jin X, et al. Ordered mesoporous C3N5 with a combined triazole and triazine framework and its graphene hybrids for the oxygen reduction reaction (ORR). Angew Chem. 2018;130(52):17381–17386. DOI:10.1002/ange.201811061
  • Ma J, Peng X, Zhou Z, et al. Extended conjugation tuning carbon nitride for non-sacrificial H2O2 photosynthesis and hypoxic tumor therapy. Angew Chem Int Ed. 2022;61(43):e202210856. DOI:10.1002/anie.202210856
  • Huang C, Wen Y, Ma J, et al. Unraveling fundamental active units in carbon nitride for photocatalytic oxidation reactions. Nat Commun. 2021;12(1):12.
  • Wang J, Zhou Q, Shen Y, et al. Carbon nitride Co-catalyst activation using N-doped carbon with enhanced photocatalytic H2 evolution. Langmuir. 2019;35(38):12366–12373.
  • Dong G, Zhao K, Zhang L. Carbon self-doping induced high electronic conductivity and photoreactivity of g-C3N4. Chem Comm. 2012;48(49):6178–6180.
  • Zhao Z, Sun Y, Dong F, et al. Template synthesis of carbon self-doped g-C3N4 with enhanced visible to near-infrared absorption and photocatalytic performance. RSC Adv. 2015;5(49):39549–39556. DOI:10.1039/C5RA03433G
  • Fang J, Fan H, Li M, et al. Nitrogen self-doped graphitic carbon nitride as efficient visible light photocatalyst for hydrogen evolution. J Mater Chem A. 2015;3(26):13819–13826. DOI:10.1039/C5TA02257F