1,602
Views
1
CrossRef citations to date
0
Altmetric
Focus on Advancements of Functional Materials with Nanoarchitectonics as Post-Nanotechnology Concept in Materials Science

Metal doped polyaniline as neuromorphic circuit elements for in-materia computing

, ORCID Icon, , , , , & show all
Article: 2178815 | Received 25 Jan 2023, Accepted 06 Feb 2023, Published online: 27 Feb 2023

References

  • Miller JF, Downing K. Evolution in materio: looking beyond the silicon box. Proceedings - NASA/DoD Conference on Evolvable Hardware, EH, Alexandria, VA, USA. Institute of Electrical and Electronics Engineers Inc.; 2002, pp. 167–9.
  • Harding S, Miller JF. Encyclopedia of Complexity and Systems Science. New York: Springer; 2009. pp. 3220–3233.
  • Kendall JD, Kumar S. The building blocks of a brain-inspired computer. Appl Phys Rev. 2020;7(1):11305.
  • Dale M, Miller JF, Stepney S. Reservoir computing as a model for in-materio computing. In Advances in unconventional computing: volume 1: theory. Vol. 22. 2017. p. 533.
  • Miller JF, Harding SL, Tufte G. Evolution-in-materio: evolving computation in materials. Evol Intell. 2014;7(1):49.
  • Mohid M, Miller JF, Harding SL, et al. IEEE SSCI 2014 - 2014 IEEE Symposium Series on Computational Intelligence - IEEE ICES: 2014 IEEE International Conference on Evolvable Systems, Orlando, FL, USA, Proceedings 46; 2014.
  • Tsuchiya T, Nakayama T, Ariga K. Nanoarchitectonics Intelligence with atomic switch and neuromorphic network system. Appl Phys Express. 2022;15(10):100101.
  • Yang JJ, Strukov DB, Stewart DR. Memristive devices for computing. Nat Nanotechnol. 2013;8(1):13–24.
  • Li Y, Wang Z, Midya R, et al. Review of memristor devices in neuromorphic computing: materials sciences and device challenges. J Phys D Appl Phys. 2018;51:503002.
  • Stathopoulos S, Khiat A, Trapatseli M, et al. Multibit memory operation of metal-oxide bi-layer memristors. Sci Rep. 2017;7(1):1.
  • Lappalainen J, Mizsei J, Huotari M. Neuromorphic thermal-electric circuits based on phase-change VO2 thin-film memristor elements. J Appl Phys. 2019;125:44501. DOI:10.1063/1.5037990
  • Zhu JX, Zhou WL, Wang ZQ, et al. Flexible, transferable and conformal egg albumen based resistive switching memory devices. RSC Adv. 2017;7(51):32114–32119.
  • Zhao M, Wang S, Li D, et al. Silk Protein Based Volatile Threshold Switching Memristors for Neuromorphic Computing. Advanced Electronic Materials. 2022;8(4).
  • Chen Y, Liu G, Wang C, et al. Polymer memristor for information storage and neuromorphic applications. Mater Horiz. 2014;1(5):489.
  • Kim M-H, Park H-L, Kim M-H, et al. Fluoropolymer-based organic memristor with multifunctionality for flexible neural network system. npj Flexible Electronics. 2021;5(34).
  • Krishnan K, Tsuruoka T, Mannequin C, et al. Mechanism for conducting filament growth in self-assembled polymer thin films for redox-based atomic switches. Adv Mater. 2016;28(4):640.
  • Chang CT, Zeng F, Li XJ, et al. Ultrastructural characterization of the lower motor system in a mouse model of Krabbe disease. Sci Rep. 2016;6(1):1.
  • Wu S, Tsuruoka T, Terabe K, et al. A polymer-electrolyte-based atomic switch. Adv Funct Mater. 2011;21(1):93.
  • Xu X, Register RA, Forrest SR. Mechanisms for current-induced conductivity changes in a conducting polymer. Appl Phys Lett. 2006;89(14):142109.
  • Möller S, Perlov C, Jackson W, et al. A polymer/semiconductor write-once read-many-times memory. Nature. 2003;426(6963):166.
  • Lapkin DA, Emelyanov AV, Demin VA, et al. Polyaniline-based memristive microdevice with high switching rate and endurance. Appl Phys Lett. 2018;112(4):043302.
  • Rj T, J H, J O, et al. Polyaniline nanofiber/gold nanoparticle nonvolatile memory. Nano Lett. 2005;5(6):1077.
  • Hasegawa T, Ohno T, Terabe K, et al. Learning abilities achieved by a single solid-state atomic switch. Adv Mater. 2010;22(16):1831.
  • Stieg AZ, Avizienis AV, Sillin HO, et al. Emergent criticality in complex turing B-type atomic switch networks. Adv Mater. 2012;24(2):286.
  • Li Q, Diaz‐alvarez A, Iguchi R, et al. Dynamic electrical pathway tuning in neuromorphic nanowire networks. Adv Funct Mater. 2020;30(43):2003679.
  • Aono M, Ariga K. The way to nanoarchitectonics and the way of nanoarchitectonics. Adv Mater. 2016;28(6):989.
  • Demis EC, Aguilera R, Scharnhorst K, et al. Nanoarchitectonic atomic switch networks for unconventional computing. Jpn J Appl Phys. 2016;55(11):1102B2.
  • Tanaka G, Yamane T, Héroux JB, et al. Recent advances in physical reservoir computing: a review. Neural Networks. 2019;115:100.
  • Przyczyna D, Zawal P, Mazur T, et al. In-materio neuromimetic devices: dynamics, information processing and pattern recognition. Jpn J Appl Phys. 2020;59(5):050504.
  • Wang Z, Rao M, Midya R, et al. Threshold Switching of Ag or Cu in Dielectrics: Materials, Mechanism, and Applications. Advanced Functional Materials. 2017;28(6).
  • Eskandari F, Shabani P, Yousefi R. Pani-based complementary resistive switches: the effects of Ag on physical properties and switching mechanism. Appl Phys A. 2021;127(4):220.
  • Stejskal J, Kratochvíl P, Jenkins AD. The formation of polyaniline and the nature of its structures. Polymer (Guildf). 1996;37:367.
  • Geniès EM, Boyle A, Lapkowski M, et al. Polyaniline: a historical survey. Synth Met. 1990;36(2):139.
  • Negi YS, Adhyapak PV. Development in polyaniline conducting polymers. J Macromol Sci Part C. 2007;42(1):35.
  • Stejskal J, Trchová M, Bober P, et al. Conducting polymers: polyaniline. Encycl Polym Sci Technol. 2015;1:1–44.
  • Macdiarmid AG, Chiang JC, Richter AF, et al. Polyaniline: a new concept in conducting polymers. Synth Met. 1987;18(1–3):285.
  • MacDiarmid AG. Polyaniline and polypyrrole: where are we headed? Synth Met. 1997;84(27):27–34.
  • Liu M-C, Dai C-L, Chan C-H, et al. Manufacture of a polyaniline nanofiber ammonia sensor integrated with a readout circuit using the CMOS-MEMS technique. Sensors. 2009;9(2):869–880.
  • Yang M-Z, Dai C-L, Lin W-Y. Fabrication and characterization of polyaniline/PVA humidity microsensors. Sensors. 2011;11(8):8143–8151.
  • Stejskal J, Sapurina I, Trchová M. Polyaniline nanostructures and the role of aniline oligomers in their formation. Prog Polym Sci. 2010;35(12):1420.
  • Tran HD, D’arcy JM, Wang Y, et al. The oxidation of aniline to produce “polyaniline”: a process yielding many different nanoscale structures. J Mater Chem. 2011;21:3534.
  • Ciric-Marjanovic G. Recent advances in polyaniline research: polymerization mechanisms, structural aspects, properties and applications. Synth Met. 2013;177:1.
  • Demin VA, Erokhin VV, Kashkarov PK, et al. Electrochemical model of the polyaniline based organic memristive device. J Appl Phys. 2014;116(6):064507.
  • Prudnikov NV, Lapkin DA, Emelyanov AV, et al. Associative STDP-like learning of neuromorphic circuits based on polyaniline memristive microdevices. J Phys D Appl Phys. 2020;53(41):414001.
  • Demin VA, Erokhin VV, Emelyanov AV, et al. Hardware elementary perceptron based on polyaniline memristive devices. Org Electron. 2015;25(16):16–20.
  • Lapkin DA, Emelyanov AV, Demin VA, et al. Spike-timing-dependent plasticity of polyaniline-based memristive element. Microelectron Eng. 2018;185–186(43):43–47.
  • Battistoni S, Erokhin V, Iannotta S. Organic memristive devices for perceptron applications. J Phys D Appl Phys. 2018;51(28):284002.
  • Yu I, Sapurina, Stejskal J. Russ J General Chem. 2012;82(2):256. DOI:10.1134/S1070363212020168
  • Naoki T, Hu Y, Mariko I. Catalytic polymerization of aniline and its derivatives by using copper(II) salts and oxygen. New type of polyaniline with branched structure. Bull Chem Soc Jpn. 2006;67(7):1947.
  • Sapurina IY, Stejskal J, Original Russian Text © I.Yu. Sapurina. Oxidation of aniline with strong and weak oxidants. J Stejskal. 2012;82(2):261.
  • Nayak A, Ohno T, Tsuruoka T, et al. Controlling the synaptic plasticity of a Cu2S gap-type atomic switch. Adv Funct Mater. 2012;22(17):3606.
  • Stieg AZ, Avizienis AV, Sillin HO, et al. Handbook of memristor networks. Des Moines, IA, USA: Springer International Publishing. 2019. pp. 391–427.
  • Krans JM, Muller CJ, Yanson IK, et al. One-atom point contacts. Phys Rev B. 1993;48(19):14721.
  • Tsuruoka T, Hasegawa T, Terabe K, et al. Conductance quantization and synaptic behavior in a Ta2O5-based atomic switch. Nanotechnology. 2012;23:435705. DOI:10.1088/0957-4484/23/43/435705
  • Krishnan K, Muruganathan M, Tsuruoka T, et al. Highly reproducible and regulated conductance quantization in a polymer‐based atomic switch. Adv Funct Mater. 2017;27:1605104. DOI:10.1002/adfm.201605104
  • Nandakumar SR, Minvielle M, Nagar S, et al. A 250 mV Cu/SiO2/W memristor with half-integer quantum conductance states. Nano Lett. 2016;16:1602. DOI:10.1021/acs.nanolett.5b04296
  • Guo X, Schindler C, Menzel S, et al. Understanding the switching-off mechanism in Ag+ migration based resistively switching model systems. Appl Phys Lett. 2007;91(13):133513.
  • National Astronomical Observatory of Japan, Chronological Scientific Tables, Maruzen, Japan; 2000.