1,407
Views
0
CrossRef citations to date
0
Altmetric
Focus on Frontline Research on Biomaterials-based Bioengineering for Future Therapy

Fluorescent optotracers for bacterial and biofilm detection and diagnostics

ORCID Icon, & ORCID Icon
Article: 2246867 | Received 09 Feb 2023, Accepted 07 Aug 2023, Published online: 05 Sep 2023

References

  • Hecker MT, Aron DC, Patel NP, et al. Unnecessary use of antimicrobials in hospitalized patients: current patterns of misuse with an emphasis on the antianaerobic spectrum of activity. Arch Intern Med. 2003;163(8):972–24. doi: 10.1001/archinte.163.8.972
  • Fridkin S, Baggs J, Fagan R, et al. Vital signs: improving antibiotic use among hospitalized patients. Morb Mortal Wkly Rep. 2014;63:194–200.
  • Vaughn VM, Flanders SA, Snyder A, et al. Excess antibiotic treatment duration and adverse events in patients hospitalized with pneumonia: a multihospital cohort study. Ann Intern Med. 2019;171:153–163. doi: 10.7326/M18-3640
  • Krockow EM, Kurvers RHJM, Herzog SM, et al. Harnessing the wisdom of crowds can improve guideline compliance of antibiotic prescribers and support antimicrobial stewardship. Sci Rep. 2020;10:18782. doi: 10.1038/s41598-020-75063-z
  • Landstedt K, Sharma A, Johansson F, et al. Antibiotic prescriptions for inpatients having non-bacterial diagnosis at medicine departments of two private sector hospitals in Madhya Pradesh, India: a cross-sectional study. BMJ Open. 2017;7(4):e012974. doi: 10.1136/bmjopen-2016-012974
  • Rao GG. Risk factors for the spread of antibiotic-resistant bacteria. Drugs. 1998;55:323–330. doi: 10.2165/00003495-199855030-00001
  • Aldred KJ, Kerns RJ, Osheroff N. Mechanism of quinolone action and resistance. Biochemistry. 2014;53(10):1565–1574. doi: 10.1021/bi5000564
  • Mah T-F. Biofilm-specific antibiotic resistance. Future Microbiol. 2012;7(9):1061–1072. doi: 10.2217/fmb.12.76
  • Sharma D, Misba L, Khan AU. Antibiotics versus biofilm: an emerging battleground in microbial communities. Antimicrob Resist Infect Control. 2019;8:76. doi: 10.1186/s13756-019-0533-3
  • Bowler P, Murphy C, Wolcott R. Biofilm exacerbates antibiotic resistance: is this a current oversight in antimicrobial stewardship? Antimicrob Resist Infect Control. 2020;9(1):162. doi: 10.1186/s13756-020-00830-6
  • Murray CJL, Ikuta KS, Sharara F, et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet. 2022;399:629–655. doi: 10.1016/S0140-6736(21)02724-0
  • O’Neill J. 2018. Tackling drug-resistant infections globally: final report and recommendations. 2016
  • World Bank and World Health Organization. Sustaining action against antimicrobial resistance: a case series of country experiences. Washington DC, USA: World Bank; 2022.
  • Lavigne J-P, Espinal P, Dunyach-Remy C, et al. Mass spectrometry: a revolution in clinical microbiology? Clin Chem Lab Med. 2013;51(2):257–270. doi: 10.1515/cclm-2012-0291
  • Preiswerk B, Imkamp F, Vorburger D, et al. Mycoplasma penetrans bacteremia in an immunocompromised patient detected by metagenomic sequencing: a case report. BMC Infect Dis. 2020;20(7). doi: 10.1186/s12879-019-4723-7
  • Philipp Dellinger R, Carlet J. Sepsis handbook: early diagnosis of Sepsis. BioMérieux, Lyon, France. 2007.
  • Chan T, Gu F. Early diagnosis of sepsis using serum biomarkers. Expert Rev Mol Diagn. 2011;11(5):487–496. doi: 10.1586/erm.11.26
  • The Authors BJU International. NICE (2017) Sepsis: recognition, diagnosis and early management. BJU Int. 2018;121:497–514. doi: 10.1111/bju.14179
  • Zumla A, Al-Tawfiq JA, Enne VI, et al. Rapid point of care diagnostic tests for viral and bacterial respiratory tract infections–needs, advances, and future prospects. Lancet Infect Dis. 2014;14:1123–1135. doi: 10.1016/S1473-3099(14)70827-8
  • Mahony JB, Petrich A, Smieja M. Molecular diagnosis of respiratory virus infections. Crit Rev Clin Lab Sci. 2011;48:217–249. doi: 10.3109/10408363.2011.640976
  • Tenover FC. Developing molecular amplification methods for rapid diagnosis of respiratory tract infections caused by bacterial pathogens. ClinInfect Dis. 2011;52(Suppl 4):S338–45. doi: 10.1093/cid/cir049
  • Alexander DJ, Brown IH. Recent zoonoses caused by influenza A viruses. Revue Scientifique et Technique de l’OIE. 2000;19(1):197–225. doi: 10.20506/rst.19.1.1220
  • Al-Ahmadi K, Alahmadi M, Al-Zahrani A. Spatial association between primary Middle East respiratory syndrome coronavirus infection and exposure to dromedary camels in Saudi Arabia. Zoonoses Public Health. 2020;67(4):382–390. doi: 10.1111/zph.12697
  • Van Reeth K. Avian and swine influenza viruses: our current understanding of the zoonotic risk. Vet Res. 2007;38(2):243–260. doi: 10.1051/vetres:2006062
  • Anon WHO Coronavirus (COVID-19) Dashboard.
  • Brezmes MF, Ochoa C, Eiros JM. Cost analysis in a clinical microbiology laboratory. Eur J Clin Microbiol Infect Dis. 2002;21:582–588. doi: 10.1007/s10096-002-0776-3
  • Cantón R, Gómez G, de la Pedrosa E. Economic impact of rapid diagnostic methods in clinical microbiology: price of the test or overall clinical impact. Enferm Infecc Microbiol Clin. 2017;35:659–666. doi: 10.1016/j.eimc.2017.09.005
  • Thomson RB Jr. One small step for the gram stain, one giant leap for clinical microbiology. J Clin Microbiol. 2016;54:1416–1417. doi: 10.1128/JCM.00303-16
  • Kralik P, Ricchi M. A basic guide to real time PCR in microbial diagnostics: definitions, parameters, and everything. Front Microbiol. 2017;8:108. doi: 10.3389/fmicb.2017.00108
  • Frickmann H, Zautner AE, Moter A, et al. Fluorescence in situ hybridization (FISH) in the microbiological diagnostic routine laboratory: a review. Crit Rev Microbiol. 2017;43(3):263–293. doi: 10.3109/1040841X.2016.1169990
  • Zourob M, Elwary S, Turner APF. Principles of bacterial detection: biosensors, recognition receptors and microsystems. Springer Science & Business Media; 2008. doi: 10.1007/978-0-387-75113-9
  • Li L, Mendis N, Trigui H, et al. The importance of the viable but non-culturable state in human bacterial pathogens. Front Microbiol. 2014;5. doi: 10.3389/fmicb.2014.00258
  • Reller LB, Weinstein M, Jorgensen JH, et al. Antimicrobial susceptibility testing: a review of general principles and contemporary practices. Clin Infect Dis. 2009;49:1749–1755. doi: 10.1086/647952
  • Leclercq R, Cantón R, Brown DFJ, et al. EUCAST expert rules in antimicrobial susceptibility testing. Clin Microbiol Infect. 2013;19(2):141–160. doi: 10.1111/j.1469-0691.2011.03703.x
  • Kerremans JJ, Verboom P, Stijnen T, et al. Rapid identification and antimicrobial susceptibility testing reduce antibiotic use and accelerate pathogen-directed antibiotic use. J Antimicrob Chemother. 2008;61:428–435. doi: 10.1093/jac/dkm497
  • MacVane SH, Oppermann N, Humphries RM. Time to result for pathogen identification and antimicrobial susceptibility testing of bronchoalveolar lavage and endotracheal aspirate specimens in U.S. acute care hospitals. J Clin Microbiol. 2020;58. doi: 10.1128/JCM.01468-20
  • Chun K, Syndergaard C, Damas C, et al. Sepsis pathogen identification. J Lab Autom. 2015;20:539–561. doi: 10.1177/2211068214567345
  • Maurer FP, Christner M, Hentschke M, et al. Advances in rapid identification and susceptibility testing of bacteria in the clinical microbiology laboratory: implications for patient care and antimicrobial stewardship programs. Infect Dis Rep. 2017;9:6839. doi: 10.4081/idr.2017.6839
  • Wiegand I, Hilpert K, Hancock REW. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat Protoc. 2008;3:163–175. doi: 10.1038/nprot.2007.521
  • Hudzicki J. Kirby-Bauer disk diffusion susceptibility test protocol. 2009.
  • Behera B, Anil Vishnu GK, Chatterjee S, et al. Emerging technologies for antibiotic susceptibility testing. Biosens Bioelectron. 2019;142:111552. doi: 10.1016/j.bios.2019.111552
  • Jorgensen JH, Ferraro MJ. Antimicrobial susceptibility testing: general principles and contemporary practices. Clin Infect Dis. 1998;26(4):973–980. doi: 10.1086/513938
  • Stres B, Kronegger L. Shift in the paradigm towards next-generation microbiology. FEMS Microbiol Lett. 2019;366. doi: 10.1093/femsle/fnz159
  • Fournier P-E, Drancourt M, Colson P, et al. Modern clinical microbiology: new challenges and solutions. Nat Rev Microbiol. 2013;11(8):574–585. doi: 10.1038/nrmicro3068
  • Freiwald A, Sauer S. Phylogenetic classification and identification of bacteria by mass spectrometry. Nat Protoc. 2009;4(5):732–742. doi: 10.1038/nprot.2009.37
  • Welker M, van Belkum A. One System for all: is mass spectrometry a future alternative for conventional antibiotic susceptibility testing? Front Microbiol. 2019;10:2711. doi: 10.3389/fmicb.2019.02711
  • Wieser A, Schubert S. MALDI-TOF MS entering the microbiological diagnostic laboratory – from fast identification to resistance testing. Trends Analyt Chem. 2016;84:80–87. doi: 10.1016/j.trac.2016.05.013
  • Staley C, Unno T, Gould TJ, et al. Application of Illumina next-generation sequencing to characterize the bacterial community of the Upper Mississippi River. J Appl Microbiol. 2013;115(5):1147–1158. doi: 10.1111/jam.12323
  • Westblade LF, van Belkum A, Grundhoff A, et al. Role of clinicogenomics in Infectious disease diagnostics and public health microbiology. J Clin Microbiol. 2016;54:1686–1693. doi: 10.1128/JCM.02664-15
  • Yohe S, Thyagarajan B. Review of clinical next-generation sequencing. Arch Pathol Lab Med. 2017;141(11):1544–1557. doi: 10.5858/arpa.2016-0501-RA
  • Onsongo G, Erdmann J, Spears MD, et al. Implementation of cloud based next generation sequencing data analysis in a clinical laboratory. BMC Res Notes. 2014;7:314. doi: 10.1186/1756-0500-7-314
  • Law JW-F, Ab Mutalib N-S, Chan K-G, et al. Rapid methods for the detection of foodborne bacterial pathogens: principles, applications, advantages and limitations. Front Microbiol. 2014;5:770. doi: 10.3389/fmicb.2014.00770
  • Bhakta SA, Evans E, Benavidez TE, et al. Protein adsorption onto nanomaterials for the development of biosensors and analytical devices: a review. Anal Chim Acta. 2015;872:7–25. doi: 10.1016/j.aca.2014.10.031
  • Crivianu-Gaita V, Thompson M. Aptamers, antibody scFv, and antibody Fab’ fragments: an overview and comparison of three of the most versatile biosensor biorecognition elements. Biosens Bioelectron. 2016;85:32–45. doi: 10.1016/j.bios.2016.04.091
  • Idil N, Hedström M, Denizli A, et al. Whole cell based microcontact imprinted capacitive biosensor for the detection of Escherichia coli. Biosens Bioelectron. 2017;87:807–815. doi: 10.1016/j.bios.2016.08.096
  • Pappa A-M, Parlak O, Scheiblin G, et al. Organic electronics for point-of-care metabolite monitoring. Trends Biotechnol. 2018;36(1):45–59. doi: 10.1016/j.tibtech.2017.10.022
  • Parlak O, Richter-Dahlfors A. Bacterial sensing and biofilm monitoring for infection diagnostics. Macromol Biosci. 2020;20:e2000129. doi: 10.1002/mabi.202000129
  • Butina K, Löffler S, Rhen M, et al. Electrochemical sensing of bacteria via secreted redox active compounds using conducting polymers. Sens Actuators B. 2019;297:126703. doi: 10.1016/j.snb.2019.126703
  • Butina K, Filipović F, and Richter-Dahlfors A, et al. 2021. An organic electrochemical transistor to monitor Salmonella growth in real‐time. Adv Mater Interfaces. 8:2100961. doi: 10.1002/admi.202100961
  • Löffler S, Antypas H, Choong FX, et al. Conjugated Oligo- and polymers for bacterial sensing. Front Chem. 2019;7:265. doi: 10.3389/fchem.2019.00265
  • Björk L, Klingstedt T, Nilsson KPR. Thiophene-based ligands: design, synthesis and their utilization for optical assignment of polymorphic-disease-associated protein aggregates. Chembiochem. 2023;24:e202300044. doi: 10.1002/cbic.202300044
  • McQuade DT, Pullen AE, Swager TM. Conjugated polymer-based chemical sensors. Chem Rev. 2000;100(7):2537–2574. doi: 10.1021/cr9801014
  • Butina K, Lantz L, Choong FX, et al. Structural properties dictating selective optotracer detection of Staphylococcus aureus. Chembiochem. 2022;23. doi: 10.1002/cbic.202100684
  • Charych DH, Nagy JO, Spevak W, et al. Direct colorimetric detection of a receptor-ligand interaction by a polymerized bilayer assembly. Science. 1993;261(5121):585–588. doi: 10.1126/science.8342021
  • Nilsson KPR, Inganäs O. Chip and solution detection of DNA hybridization using a luminescent zwitterionic polythiophene derivative. Nat Mater. 2003;2:419–424. doi: 10.1038/nmat899
  • Doré K, Dubus S, Ho H-A, et al. Fluorescent polymeric transducer for the rapid, simple, and specific detection of nucleic acids at the zeptomole level. J Am Chem Soc. 2004;126(13):4240–4244. doi: 10.1021/ja038900d
  • Klingstedt T, Nilsson KPR. Conjugated polymers for enhanced bioimaging. Biochim Biophys Acta. 2011;1810:286–296. doi: 10.1016/j.bbagen.2010.05.003
  • Yang C, Huang H, Singh NM, et al. Synthetic conjugated Oligoelectrolytes are effective siRNA transfection carriers: relevance to pancreatic cancer gene therapy. Biomacromolecules. 2022;23(3):1259–1268. doi: 10.1021/acs.biomac.1c01498
  • Nilsson KPR, Rydberg J, Baltzer L, et al. Self-assembly of synthetic peptides control conformation and optical properties of a zwitterionic polythiophene derivative. Proc Natl Acad Sci USA. 2003;100:10170–10174. doi: 10.1073/pnas.1834422100
  • Nilsson KPR, Rydberg J, Baltzer L, et al. Twisting macromolecular chains: self-assembly of a chiral supermolecule from nonchiral polythiophene polyanions and random-coil synthetic peptides. Proc Natl Acad Sci USA. 2004;101:11197–11202. doi: 10.1073/pnas.0401853101
  • Nilsson KPR, Herland A, Hammarström P, et al. Conjugated polyelectrolytes: conformation-sensitive optical probes for detection of amyloid fibril formation. Biochemistry. 2005; 44:3718–3724. doi: 10.1021/bi047402u
  • Nilsson KPR, Hammarström P, Ahlgren F, et al. Conjugated polyelectrolytes–conformation-sensitive optical probes for staining and characterization of amyloid deposits. Chembiochem. 2006; 7:1096–1104. doi: 10.1002/cbic.200500550
  • Sigurdson CJ, Nilsson KPR, Hornemann S, et al. Prion strain discrimination using luminescent conjugated polymers. Nat Methods. 2007;4:1023–1030. doi: 10.1038/nmeth1131
  • Philipson O, Hammarström P, Nilsson KPR, et al. A highly insoluble state of Aβ similar to that of Alzheimer’s disease brain is found in Arctic APP transgenic mice. Neurobiol Aging. 2009;30:1393–1405. doi: 10.1016/j.neurobiolaging.2007.11.022
  • Nilsson KPR, Ikenberg K, Aslund A, et al. Structural typing of systemic amyloidoses by luminescent-conjugated polymer spectroscopy. Am J Pathol. 2010;176:563–574. doi: 10.2353/ajpath.2010.080797
  • Herland A, Nilsson KPR, Olsson JDM, et al. Synthesis of a regioregular zwitterionic conjugated oligoelectrolyte, usable as an optical probe for detection of amyloid fibril formation at acidic pH. J Am Chem Soc. 2005;127:2317–2323. doi: 10.1021/ja045835e
  • Nilsson KPR, Aslund A, Berg I, et al. Imaging distinct conformational states of amyloid-beta fibrils in Alzheimer’s disease using novel luminescent probes. ACS Chem Biol. 2007;2:553–560. doi: 10.1021/cb700116u
  • Aslund A, Sigurdson CJ, Klingstedt T, et al. Novel pentameric thiophene derivatives for in vitro and in vivo optical imaging of a plethora of protein aggregates in cerebral amyloidoses. ACS Chem Biol. 2009;4:673–684. doi: 10.1021/cb900112v
  • Mahajan V, Klingstedt T, Simon R, et al. Cross β-Sheet conformation of Keratin 8 is a specific feature of Mallory–Denk bodies compared with other hepatocyte inclusions. Gastroenterology. 2011;141:1080–90.e7. doi: 10.1053/j.gastro.2011.05.039
  • Klingstedt T, Aslund A, Simon RA, et al. Synthesis of a library of oligothiophenes and their utilization as fluorescent ligands for spectral assignment of protein aggregates†. Org Biomol Chem. 2011;9:8356–8370. doi: 10.1039/c1ob05637a
  • Klingstedt T, Shirani H, Åslund KOA, et al. The structural basis for optimal performance of oligothiophene-based fluorescent amyloid ligands: conformational flexibility is essential for spectral assignment of a diversity of protein aggregates. Chemistry. 2013;19:10179–10192.
  • Johansson LBG, Simon R, Bergström G, et al. An azide functionalized oligothiophene ligand–a versatile tool for multimodal detection of disease associated protein aggregates. Biosens Bioelectron. 2015;63:204–211. doi: 10.1016/j.bios.2014.07.042
  • Simon RA, Shirani H, Aslund KOA, et al. Pentameric thiophene-based ligands that spectrally discriminate amyloid-β and tau aggregates display distinct solvatochromism and viscosity-induced spectral shifts. Chemistry. 2014;20:12537–12543. doi: 10.1002/chem.201402890
  • Klingstedt T, Shirani H, Mahler J, et al. Distinct spacing between anionic groups: an essential chemical determinant for achieving thiophene-based ligands to distinguish β-amyloid or tau polymorphic aggregates. Chemistry. 2015;21:9072–9082. doi: 10.1002/chem.201500556
  • Herrmann US, Schütz AK, Shirani H, et al. Structure-based drug design identifies polythiophenes as antiprion compounds. Sci Transl Med. 2015;7:299ra123. doi: 10.1126/scitranslmed.aab1923
  • Shirani H, Linares M, Sigurdson CJ, et al. A palette of fluorescent thiophene-based ligands for the identification of protein aggregates. Chemistry. 2015;21:15133–15137. doi: 10.1002/chem.201502999
  • Lantz L, Shirani H, Klingstedt T, et al. Synthesis and characterization of thiophene-based donor-acceptor-donor heptameric ligands for spectral assignment of polymorphic amyloid-β deposits. Chemistry. 2020;26:7425–7432. doi: 10.1002/chem.201905612
  • Klingstedt T, Nilsson KPR. Luminescent conjugated poly- and oligo-thiophenes: optical ligands for spectral assignment of a plethora of protein aggregates. Biochem. 2012;40:704–710. doi: 10.1042/BST20120009
  • Choong FX, Bäck M, Steiner SE, et al. Nondestructive, real-time determination and visualization of cellulose, hemicellulose and lignin by luminescent oligothiophenes. Sci Rep. 2016;6:35578. doi: 10.1038/srep35578
  • Choong FX, Bäck M, Fahlén S, et al. Real-time optotracing of curli and cellulose in live Salmonella biofilms using luminescent oligothiophenes. NPJ Biofilm Microb. 2016;2:16024. doi: 10.1038/npjbiofilms.2016.24
  • Butina K, Tomac A, Choong FX, et al. Optotracing for selective fluorescence-based detection, visualization and quantification of live S. aureus in real-time. NPJ Biofilm Microb. 2020;6:35. doi: 10.1038/s41522-020-00150-y
  • Klingstedt T, Aslund A, Simon RA, et al. Synthesis of a library of oligothiophenes and their utilization as fluorescent ligands for spectral assignment of protein aggregates. Org Biomol Chem. 2011;9:8356–8370.
  • Weintraub A. Immunology of bacterial polysaccharide antigens. Carbohydr Res. 2003;338(23):2539–2547. doi: 10.1016/j.carres.2003.07.008
  • Perchiacca JM, Ladiwala ARA, Bhattacharya M, et al. Structure-based design of conformation- and sequence-specific antibodies against amyloid β. Proc Natl Acad Sci USA. 2012;109:84–89. doi: 10.1073/pnas.1111232108
  • Groman RP. Chapter 93 - gram-positive infections. In: Silverstein DC Hopper K, editors. Small animal critical care medicine. 2nd ed. St. Louis: W.B. Saunders; 2015. p. 488–492. doi: 10.1016/B978-1-4557-0306-7.00093-3
  • Scott RD. 2009. The direct medical costs of healthcare-associated infections in U.S. hospitals and the benefits of prevention.
  • Idrees M, Sawant S, Karodia N, et al. Staphylococcus aureus biofilm: morphology, genetics, pathogenesis and treatment strategies. Int J Environ Res Public Health. 2021;18:7602. doi: 10.3390/ijerph18147602
  • Rohde M, Fischetti VA, Novick RP, et al. The gram-positive bacterial cell wall. Microbiol Spectr. 2019;7(3). doi: 10.1128/microbiolspec.GPP3-0044-2018
  • Vollmer W, Blanot D, de Pedro MA. Peptidoglycan structure and architecture. FEMS Microbiol Rev. 2008;32(2):149–167. doi: 10.1111/j.1574-6976.2007.00094.x
  • Choong FX, Lantz L, Shirani H, et al. Stereochemical identification of glucans by a donor–acceptor–donor conjugated pentamer enables multi-carbohydrate anatomical mapping in plant tissues. Cellulose. 2019;26:4253–4264.
  • Fey PD, Endres JL, Yajjala VK, et al. A genetic resource for rapid and comprehensive phenotype screening of nonessential Staphylococcus aureus genes. MBio. 2013;4(1):e00537–12. doi: 10.1128/mBio.00537-12
  • Asensio JL, Ardá A, Cañada FJ, et al. Carbohydrate-aromatic interactions. Acc Chem Res. 2013;46:946–954. doi: 10.1021/ar300024d
  • van der Wal A, Norde W, Zehnder AJB, et al. Determination of the total charge in the cell walls of gram-positive bacteria. Colloids Surf. 1997;9:81–100. doi: 10.1016/S0927-7765(96)01340-9
  • Costerton JW, Lewandowski Z, Caldwell DE, et al. Microbial biofilms. Annu Rev Microbiol. 1995;49(1):711–745. doi: 10.1146/annurev.mi.49.100195.003431
  • Fux CA, Costerton JW, Stewart PS, et al. Survival strategies of infectious biofilms. Trends Microbiol. 2005;13(1):34–40. doi: 10.1016/j.tim.2004.11.010
  • McCarty SM, Cochrane CA, Clegg PD, et al. The role of endogenous and exogenous enzymes in chronic wounds: a focus on the implications of aberrant levels of both host and bacterial proteases in wound healing. Wound Repair Regener. 2012;20(2):125–136. doi: 10.1111/j.1524-475X.2012.00763.x
  • Serra DO, Hengge R. Stress responses go three dimensional - the spatial order of physiological differentiation in bacterial macrocolony. Biofilms Environ Microbiol. 2014;16:1455–1471. doi: 10.1111/1462-2920.12483
  • Donlan RM. Biofilms: microbial life on surfaces. Emerg Infect Dis. 2002;8:881–890. doi: 10.3201/eid0809.020063
  • Flemming H-C, Wingender J. The biofilm matrix. Nat Rev Microbiol. 2010;8(9):623–633. doi: 10.1038/nrmicro2415
  • Flemming HC, Wingender J. Relevance of microbial extracellular polymeric substances (EPSs)–part I: structural and ecological aspects. Water Sci Technol. 2001;43:1–8. doi: 10.2166/wst.2001.0326
  • Thongsomboon W, Serra DO, Possling A, et al. Phosphoethanolamine cellulose: a naturally produced chemically modified cellulose. Science. 2018;359(6373):334–338. doi: 10.1126/science.aao4096
  • Römling U, Bian Z, Hammar M, et al. Curli fibers are highly conserved between Salmonella typhimurium and Escherichia coli with respect to operon structure and regulation. J Bacteriol. 1998;180(3):722–731. doi: 10.1128/JB.180.3.722-731.1998
  • Antypas H, Choong FX, Libberton B, et al. Rapid diagnostic assay for detection of cellulose in urine as biomarker for biofilm-related urinary tract infections. NPJ Biofilm Microb. 2018;4(1):26. doi: 10.1038/s41522-018-0069-y
  • Choong FX, Huzell S, Rosenberg M, et al. A semi high-throughput method for real-time monitoring of curli producing Salmonella biofilms on air-solid interfaces. Biofilm. 2021;3:100060. doi: 10.1016/j.bioflm.2021.100060
  • Pontes MH, Lee E-J, Choi J, et al. Salmonella promotes virulence by repressing cellulose production. Proc Natl Acad Sci USA. 2015;112(16):5183–5188. doi: 10.1073/pnas.1500989112
  • Corona-Izquierdo FP, Membrillo-Hernández J. A mutation in rpoS enhances biofilm formation in Escherichia coli during exponential phase of growth. FEMS Microbiol Lett. 2002;211:105–110. doi: 10.1111/j.1574-6968.2002.tb11210.x
  • Gerstel U, Römling U. The csgD promoter, a control unit for biofilm formation in Salmonella typhimurium. Res Microbiol. 2003;154:659–667. doi: 10.1016/j.resmic.2003.08.005
  • Bongomin F, Gago S, Oladele RO, et al. Global and multi-national prevalence of fungal diseases-estimate precision. J Fungi (Basel). 2017;3. doi: 10.3390/jof3040057
  • Mukaremera L, Lee KK, Mora-Montes HM, et al. Yeast, pseudohyphal, and hyphal morphogenesis differentially affects immune recognition. Front Immunol. 2017;8:629. doi: 10.3389/fimmu.2017.00629
  • Noble SM, Gianetti BA, Witchley JN. Candida albicans cell-type switching and functional plasticity in the mammalian host. Nature Rev Microbiol. 2017;15(2):96–108. doi: 10.1038/nrmicro.2016.157
  • Pierce CG, Vila T, Romo JA, et al. The Candida albicans biofilm matrix: composition, structure and function. J Fungi (Basel). 2017;3:14. doi: 10.3390/jof3010014
  • Kärkkäinen E, Jakobsson SG, Edlund U. Optotracing for live selective fluorescence-based detection of Candida albicans biofilms. Front Cell Infect Microbiol. 2022; 12:981454. doi: 10.3389/fcimb.2022.981454
  • Garcia-Rubio R, de Oliveira HC, Rivera J, et al. The fungal cell wall: Candida, cryptococcus, and aspergillus species. Front Microbiol. 2019;10:2993. doi: 10.3389/fmicb.2019.02993
  • Lowman DW, Ferguson DA, Williams DL. Structural characterization of (1→3)-β-d-glucans isolated from blastospore and hyphal forms of Candida albicans. Carbohydr Res. 2003;338(14):1491–1496. doi: 10.1016/S0008-6215(03)00169-1
  • Flemming H-C, Wuertz S. Bacteria and archaea on earth and their abundance in biofilms. Nat Rev Microbiol. 2019;17(4):247–260. doi: 10.1038/s41579-019-0158-9
  • Dragoš A, Kovács ÁT. The peculiar functions of the bacterial extracellular matrix. Trends Microbiol. 2017;25:257–266. doi: 10.1016/j.tim.2016.12.010
  • Nadell CD, Drescher K, Wingreen NS, et al. Extracellular matrix structure governs invasion resistance in bacterial biofilms. ISME J. 2015;9(8):1700–1709. doi: 10.1038/ismej.2014.246
  • Yin W, Wang Y, Liu L, et al. Biofilms: the microbial “protective clothing” in extreme environments. Int J Mol Sci. 2019;20(14):3423. doi: 10.3390/ijms20143423
  • Høiby N, Bjarnsholt T, Givskov M, et al. Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents. 2010;35:322–332. doi: 10.1016/j.ijantimicag.2009.12.011
  • Ito A, Taniuchi A, May T, et al. Increased antibiotic resistance of Escherichia coli in mature biofilms. Appl Environ Microbiol. 2009;75(12):4093–4100. doi: 10.1128/AEM.02949-08
  • Stewart PS, Costerton JW. Antibiotic resistance of bacteria in biofilms. Lancet. 2001;358(9276):135–138. doi: 10.1016/S0140-6736(01)05321-1
  • Eckert JA, Rosenberg M, Rhen M, et al. An optotracer-based antibiotic susceptibility test specifically targeting the biofilm lifestyle of Salmonella. Biofilms. 2022;4:100083. doi: 10.1016/j.bioflm.2022.100083
  • Cimdins A, Simm R. Semiquantitative analysis of the red, dry, and rough colony morphology of Salmonella enterica serovar typhimurium and Escherichia coli using Congo red. Methods Mol Biol. 2017;1657:225–241.
  • Kostakioti M, Hadjifrangiskou M, Hultgren SJ. Bacterial biofilms: development, dispersal, and therapeutic strategies in the dawn of the postantibiotic era. Cold Spring Harb Perspect Med. 2013;3(4):a010306. doi: 10.1101/cshperspect.a010306
  • Chakraborty P, Bajeli S, Kaushal D, et al. Biofilm formation in the lung contributes to virulence and drug tolerance of mycobacterium tuberculosis. Nat Commun. 2021;12(1):1606. doi: 10.1038/s41467-021-21748-6
  • Ross P, Mayer R, Benziman M. Cellulose biosynthesis and function in bacteria. Microbiol Rev. 1991;55(1):35–58. doi: 10.1128/mr.55.1.35-58.1991
  • Saxena IM, Brown RM. Biosynthesis of cellulose. In: Morohoshi N, Komamine A, editors. Progress in biotechnology. Vol. 18, Elsevier; 2001. p. 69–76. doi: 10.1016/S0921-0423(01)80057-5
  • Terlizzi ME, Gribaudo G, Maffei ME. UroPathogenic Escherichia coli (UPEC) infections: virulence factors, bladder responses, antibiotic, and non-antibiotic antimicrobial strategies. Front Microbiol. 2017;8:1566. doi: 10.3389/fmicb.2017.01566
  • Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: a common cause of persistent infections. Science. 1999;284(5418):1318–1322. doi: 10.1126/science.284.5418.1318
  • Choong FX, Bäck M, Schulz A, et al. Stereochemical identification of glucans by oligothiophenes enables cellulose anatomical mapping in plant tissues. Sci Rep. 2018;8:3108. doi: 10.1038/s41598-018-21466-y
  • Lakowicz JR. Quenching of fluorescence. In: Principles of fluorescence spectroscopy. Boston, MA: Springer US; 2006. p. 277–330.
  • Boerjan W, Ralph J, Baucher M. Lignin biosynthesis. Annu Rev Plant Biol. 2003;54:519–546. doi: 10.1146/annurev.arplant.54.031902.134938
  • Uses of lignin. [accessed 2023 July 3]. https://www.valmet.com/pulp/other-valueadding-processes/lignin-extraction/lignin-uses/
  • Ahmad N, Zakaria MR. Oligosaccharide From Hemicellulose. In: Sapuan SM, Hassan MA, editors. Lignocellulose for future bioeconomy. Elsevier; 2019. p. 135–152. doi: 10.1016/B978-0-12-816354-2.00008-6
  • Huang L-Z, Ma M-G, Ji X-X, et al. Recent developments and applications of hemicellulose from wheat straw: a review. Front Bioeng Biotechnol. 2021;9:690773. doi: 10.3389/fbioe.2021.690773
  • Wahlström N, Nylander F, Malmhäll-Bah E, et al. Composition and structure of cell wall ulvans recovered from Ulva spp. along the Swedish west coast. Carbohydr Polym. 2020;233:115852. doi: 10.1016/j.carbpol.2020.115852
  • Tan ECD, Lamers P. Circular bioeconomy concepts—a perspective. Front Sustain. 2021;2. doi: 10.3389/frsus.2021.701509