787
Views
0
CrossRef citations to date
0
Altmetric
Bio-inspired and Biomedical Materials

Antibacterial and osteogenic thin films on Ti-6Al-4V surface formed by passivation process in copper hydroxide solution

ORCID Icon, , , , ORCID Icon &
Article: 2303327 | Received 18 Oct 2023, Accepted 04 Jan 2024, Published online: 08 Feb 2024

References

  • Hanawa T. Titanium–tissue interface reaction and its control with surface treatment. Front Bioeng Biotechnol. 2019;7:170. doi: 10.3389/fbioe.2019.00170
  • Kaur M, Singh K. Review on titanium and titanium based alloys as biomaterials for orthopaedic applications. Mater Sci Eng C. 2019;102:844–9. doi: 10.1016/j.msec.2019.04.064
  • RP V. Titanium based biomaterial for bone implants: a mini review. Mater Today Proc. 2020;26:3148–3151. doi: 10.1016/j.matpr.2020.02.649
  • Schwarz F, Derks J, Monje A, et al. Peri-implantitis. J Clin Periodontol. 2018;45(S20):S246–S266. doi: 10.1111/jcpe.12954
  • Kapadia BH, Berg RA, Daley JA, et al. Periprosthetic joint infection. Lancet. 2016;387(10016):386–394. doi: 10.1016/S0140-6736(14)61798-0
  • Ahmadabadi HY, Yu K, Kizhakkedathu JN. Surface modification approaches for prevention of implant associated infections. Colloids Surf B Biointerfaces. 2020;193:111116. doi: 10.1016/j.colsurfb.2020.111116
  • Zimmerli WJ. Clinical presentation and treatment of orthopaedic implant-associated infection. J Intern Med. 2014;276(2):111–119. doi: 10.1111/joim.12233
  • Chouirfa H, Bouloussa H, Migonney V, et al. Review of titanium surface modification techniques and coatings for antibacterial applications. Acta Biomater. 2019;83:37–54. doi: 10.1016/j.actbio.2018.10.036
  • Shimabukuro M. Antibacterial property and biocompatibility of silver, copper, and zinc in titanium dioxide layers incorporated by one-step micro-arc oxidation: a review. Antibiotics. 2020;9(10):716. doi: 10.3390/antibiotics9100716
  • Souza JGS, Bertolini MM, Costa RC, et al. Targeting implant-associated infections: titanium surface loaded with antimicrobial. IScience. 2021;24(1):102008. doi: 10.1016/j.isci.2020.102008
  • Rimondini L, Farè S, Brambilla E, et al. The effect of surface roughness on early in vivo plaque colonization on titanium. J Periodontol. 1997;68(6):556–562. doi: 10.1902/jop.1997.68.6.556
  • Dhaliwal JS, Rahman NA, Knights J, et al. The effect of different surface topographies of titanium implants on bacterial biofilm: a systematic review. Sci. 2019;1(6):1–16. doi: 10.1007/s42452-019-0638-6
  • Al-Ahmad A, Wiedmann-Al-Ahmad M, Fackler A, et al. In vivo study of the initial bacterial adhesion on different implant materials. Arch Oral Biol. 2013;58(9):1139–1147. doi: 10.1016/j.archoralbio.2013.04.011
  • Gil J, Pérez R, Herrero-Climent M, et al. Benefits of residual aluminum oxide for sand blasting titanium dental implants: osseointegration and bactericidal effects. Materials. 2021;15(1):178. doi: 10.3390/ma15010178
  • Liao PB, Cheng HC, Huang CF, et al. The cell culture of titanium alloy surface modifications by micro-powder blasting and co-blast techniques. Surf Eng. 2019;35(7):643–651. doi: 10.1080/02670844.2019.1587570
  • Dong S, Zhao T, Wu W, et al. Sandblasted/acid-etched titanium surface modified with calcium phytate enhances bone regeneration in a high-glucose microenvironment by regulating reactive oxygen species and cell senescence. Sci Eng. 2023;9(8):4720–4734. doi: 10.1021/acsbiomaterials.3c00385
  • Ramaglia L, Postiglione L, Di Spigna G, et al. Dent Mater J. 2011; 30:183–192.
  • Nishiguchi S, Nakamura T, Kobayashi M. The effect of heat treatment on bone-bonding ability of alkali-treated titanium. Biomaterials. 1999;20(5):491–500. doi: 10.1016/S0142-9612(98)90203-4
  • Kawashita M, Iwabuchi Y, Suzuki K, et al. Surface structure and in vitro apatite-forming ability of titanium doped with various metals. Colloids Surf A. 2018;555:558–564. doi: 10.1016/j.colsurfa.2018.07.027
  • Shimabukuro M, Kobayashi M, Kawashita M. Metallic substrate influences on the osteogenic cell compatibility and antibacterial activity of silver-incorporated porous oxide layers formed by micro-arc oxidation. ACS Appl Eng Mater. 2023;1(8):2288–2294. doi: 10.1021/acsaenm.3c00332
  • Shen X, Fang K, Ru Yie KHR, et al. Bioact Mater. 2022;10:405–419. doi:10.1016/j.bioactmat.2021.08.031.
  • Teughels W, Van Assche N, Sliepen I, et al. Effect of material characteristics and/or surface topography on biofilm development. Clin Oral Implants Res. 2006;17(S2):68–81. doi: 10.1111/j.1600-0501.2006.01353.x
  • Dank A, Aartman IH, Wismeijer D, et al. Effect of dental implant surface roughness in patients with a history of periodontal disease: a systematic review and meta-analysis. Int J Implant Dent. 2019;5(1):1–11. doi: 10.1186/s40729-019-0156-8
  • Pouilleau J, Devilliers D, Garrido F, et al. Structure and composition of passive titanium oxide films. Mat Sci Eng B. 1997;47(3):235–243. doi: 10.1016/S0921-5107(97)00043-3
  • Shannon RD, CT P. Effective ionic radii in oxides and fluorides. Acta Crystallogr B Struct Sci. 1969;25(5):925–946. doi: 10.1107/S0567740869003220
  • Hanawa T. Biocompatibility of titanium from the viewpoint of its surface. Sci Tech Adv Mate. 2022;23(1):457–472. doi: 10.1080/14686996.2022.2106156
  • Boehm HP. Angew Chem Int Ed Engl. 1966;5(6):533–544. doi: 10.1002/anie.196605331
  • Parfitt GD. The surface of titanium dioxide. In: Progress in surface and membrane science. Vol. 11. Elsevier; 1976. p. 181–226. https://www.sciencedirect.com/science/article/abs/pii/B9780125718110500091.
  • Boehm HP. Acidic and basic properties of hydroxylated metal oxide surfaces. Faraday Soc. 1971;52:264–275. doi: 10.1039/df9715200264
  • Akhavan O, Azimirad R, Safa S, et al. CuO/Cu(OH)2 hierarchical nanostructures as bactericidal photocatalysts. J Mater Chem. 2011;21(26):9634–9640. doi: 10.1039/c0jm04364h
  • Phan DN, Dorjjugder N, Saito Y, et al. Antibacterial mechanisms of various copper species incorporated in polymeric nanofibers against bacteria. Mater Today Commun. 2020;25:101377. doi: 10.1016/j.mtcomm.2020.101377
  • Chen Y, Sun R, Yan W, et al. Sci Total Environ. 2022;817:152897. doi:10.1016/j.scitotenv.2021.152897.
  • Cudennec Y, Lecerf ASSS. The transformation of Cu(OH)2 into CuO, revisited. Solid State Sci. 2003;5(11–12):1471–1474. doi: 10.1016/j.solidstatesciences.2003.09.009
  • Shimabukuro M, Manaka T, Tsutsumi Y, et al. Corrosion behavior and bacterial viability on different surface states of copper. Mater Trans. 2020;61(6):1143–1148. doi: 10.2320/matertrans.MT-M2020008
  • DA S. High-resolution X-Ray photoemission spectrum of the valence bands of gold. Phys Rev B. 1972;5(12):4709–4714. doi: 10.1103/PhysRevB.5.4709
  • Biesinger MC. Advanced analysis of copper X-ray photoelectron spectra. Surf Interface Anal. 2017;49(13):1325–1334. doi: 10.1002/sia.6239
  • Shimabukuro M, Tsutsumi Y, Yamada R, et al. Investigation of realizing both antibacterial property and osteogenic cell compatibility on titanium surface by simple electrochemical treatment. Sci Eng. 2019;5(11):5623–5630. doi: 10.1021/acsbiomaterials.8b01058
  • Shimabukuro M, Hayashi K, Kishida R, et al. No-observed-effect level of silver phosphate in carbonate apatite artificial bone on initial bone regeneration. ACS Infect Dis. 2022;8(1):159–169. doi: 10.1021/acsinfecdis.1c00480
  • Shimabukuro M, Ito H, Tsutsumi Y, et al. The effects of various metallic surfaces on cellular and bacterial adhesion. Metals. 2019;9(11):1145. doi: 10.3390/met9111145
  • Harris H. The human alkaline phosphatases: what we know and what we don’t know. Clinica Chimica Acta. 1990;186(2):133–150. doi: 10.1016/0009-8981(90)90031-M
  • Trindade R, Albrektsson T, Galli S, et al. Bone immune response to materials, part I: titanium, PEEK and copper in comparison to sham at 10 days in Rabbit Tibia. J Clin Med. 2018;7(12):526. doi: 10.3390/jcm7120526
  • Scheiber I, Dringen R, Mercer JF. Copper: effects of deficiency and overload. Interrelations between essential metal ions and human diseases. 2013;359–387.
  • Wang Y, Zhang W, Yao Q. Copper-based biomaterials for bone and cartilage tissue engineering. J Orthop Transl. 2021;29:60–71. doi: 10.1016/j.jot.2021.03.003
  • Shimabukuro M, Hayashi K, Kishida R, et al. Surface functionalization with copper endows carbonate apatite honeycomb scaffold with antibacterial, proangiogenic, and pro-osteogenic activities. Biomater Adv. 2022;135:212751. doi: 10.1016/j.bioadv.2022.212751
  • Shimabukuro M, Tsutsumi Y, Nozaki K, et al. Investigation of antibacterial effect of copper introduced titanium surface by electrochemical treatment against facultative anaerobic bacteria. Dent Mater J. 2020;39(4):639–647. doi: 10.4012/dmj.2019-178
  • Aoki S, Shimabukuro M, Kishida R, et al. Electrochemical Deposition of Copper on Bioactive Porous Titanium Dioxide Layer: antibacterial and pro-osteogenic activities. ACS Appl Bio Mater. 2023;6(12):5759–5767. doi: 10.1021/acsabm.3c00860