629
Views
0
CrossRef citations to date
0
Altmetric
Engineering and Structural Materials

One-step formation of three-dimensional interconnected T-shaped microstructures inside composites by orthogonal bidirectional self-assembly method

ORCID Icon, , , ORCID Icon, ORCID Icon & ORCID Icon
Article: 2313957 | Received 04 Dec 2023, Accepted 29 Jan 2024, Published online: 04 Mar 2024

References

  • Faustini M, Nicole L, Ruiz-Hitzky E, et al. History of organic–inorganic hybrid materials: prehistory, art, science, and advanced applications. Adv Funct Mater. 2018;28(27). doi: 10.1002/adfm.201704158
  • Guerra V, Wan C, McNally T. Thermal conductivity of 2D nano-structured boron nitride (BN) and its composites with polymers. Pro Mater Sci. 2019;100:170–14. doi: 10.1016/j.pmatsci.2018.10.002
  • Forintos N, Czigany T. Multifunctional application of carbon fiber reinforced polymer composites: electrical properties of the reinforcing carbon fibers – a short review. Compos B Eng. 2019;162:331–343. doi: 10.1016/j.compositesb.2018.10.098
  • Markandan K, Lai CQ. Fabrication, properties and applications of polymer composites additively manufactured with filler alignment control: a review. Compos B Eng. 2023;256:110661. 10.1016/j.compositesb.2023.110661
  • Griffin A, Guo Y, Hu Z, et al. Scalable methods for directional assembly of fillers in polymer composites: creating pathways for improving material properties. Polym Compos. 2022;43(9):5747–5766. doi: 10.1002/pc.26905
  • Wang Y, Desroches GJ, Macfarlane RJ. Ordered polymer composite materials: challenges and opportunities. Nanoscale. 2021;13(2):426–443. doi: 10.1039/D0NR07547G
  • Huang X, Wang L, Shen Z, et al. Super-stretchable and self-healing hydrogel with a three-dimensional silver nanowires network structure for wearable sensor and electromagnetic interference shielding. Chem Eng J. 2022;446:137136. doi: 10.1016/j.cej.2022.137136
  • Chen Y, Zhang HB, Yang Y, et al. High-performance epoxy nanocomposites reinforced with three-dimensional carbon nanotube sponge for electromagnetic interference shielding. Adv Funct Mater. 2016;26:447–455. doi: 10.1002/adfm.201503782
  • Jin L, Wang P, Cao W, et al. Isolated solid wall-assisted thermal conductive performance of three-dimensional anisotropic MXene/graphene polymeric composites. ACS Appl Mater Inter. 2022;14(1):1747–1756. doi: 10.1021/acsami.1c20267
  • Jiang F, Song N, Ouyang R, et al. Wall density-controlled thermal conductive and mechanical properties of three-dimensional vertically aligned boron nitride network-based polymeric composites. ACS Appl Mater Inter. 2021;13(6):7556–7566. doi: 10.1021/acsami.0c22702
  • Wang M, Duan X, Xu Y, et al. Functional three-dimensional graphene/polymer composites. ACS Nano. 2016;10:7231–7247. doi: 10.1021/acsnano.6b03349
  • Kim S, Choi S, Oh E, et al. Revisit to three-dimensional percolation theory: accurate analysis for highly stretchable conductive composite materials. Sci Rep. 2016;6(1). doi: 10.1038/srep34632
  • Liu Z, Li J, Liu X. Novel functionalized BN nanosheets/epoxy composites with advanced thermal conductivity and mechanical properties. ACS Appl Mater Inter. 2020;12(5):6503–6515. doi: 10.1021/acsami.9b21467
  • Alam FE, Dai W, Yang M, et al. In situ formation of a cellular graphene framework in thermoplastic composites leading to superior thermal conductivity. J Mater Chem A Mater. 2017;5:6164–6169. doi: 10.1039/C7TA00750G
  • Yorifuji D, Ando S. Enhanced thermal conductivity over percolation threshold in polyimide blend films containing ZnO nano-pyramidal particles: advantage of vertical double percolation structure. J Mater Chem. 2011;21(12):4402–4407. doi: 10.1039/c0jm04243a
  • Chang E, Ameli A, Alian AR, et al. Percolation mechanism and effective conductivity of mechanically deformed 3-dimensional composite networks: computational modeling and experimental verification. Compos B Eng. 2021;207:108552. doi: 10.1016/j.compositesb.2020.108552
  • Su Z, Wang H, He J, et al. Fabrication of thermal conductivity enhanced polymer composites by constructing an oriented three-dimensional staggered interconnected network of boron nitride platelets and carbon nanotubes. ACS Appl Mater Inter. 2018;10(42):36342–36351. doi: 10.1021/acsami.8b09703
  • Chen Z, Ren W, Gao L, et al. Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat Mater. 2011;10(6):424–428. doi: 10.1038/nmat3001
  • Xiao C, Chen L, Tang Y, et al. Three dimensional porous alumina network for polymer composites with enhanced thermal conductivity. Compos Part A Appl Sci Manuf. 2019;124:105511. doi: 10.1016/j.compositesa.2019.105511
  • Lee SH, Yu S, Shahzad F, et al. Low percolation 3D Cu and Ag shell network composites for EMI shielding and thermal conduction. Compos Sci Technol. 2019;182:107778. doi: 10.1016/j.compscitech.2019.107778
  • Pan D, Dong J, Yang G, et al. Ice template method assists in obtaining carbonized cellulose/boron nitride aerogel with 3D spatial network structure to enhance the thermal conductivity and flame retardancy of epoxy-based composites. Adv Compos Hybrid Mater. 2022;5(1):58–70. doi: 10.1007/s42114-021-00362-6
  • Wang L, Ma Z, Zhang Y, et al. Polymer‐based EMI shielding composites with 3D conductive networks: a mini‐review. SusMat. 2021;1:413–431. doi: 10.1002/sus2.21
  • Huynh MTT, Cho HB, Suzuki T, et al. Electrical property enhancement by controlled percolation structure of carbon black in polymer-based nanocomposites via nanosecond pulsed electric field. Compos Sci Technol. 2018;154:165–174. doi: 10.1016/j.compscitech.2017.09.019
  • Sulatchaneenopdon N, Shen Z, Son HW, et al. Analyzing the influence of the core pre-structure on the dynamic response of a magnetorheological elastomer sandwich structure. Smart Mater Struct. 2022;31(7):075027. doi: 10.1088/1361-665X/ac775b
  • Chanda A, Sinha SK, Datla NV. Electrical conductivity of random and aligned nanocomposites: theoretical models and experimental validation. Compos Part A Appl Sci Manuf. 2021;149:106543. doi: 10.1016/j.compositesa.2021.106543
  • Thorkelsson K, Bai P, Xu T. Self-assembly and applications of anisotropic nanomaterials: a review. Nano Today. 2015;10(1):48–66. doi: 10.1016/j.nantod.2014.12.005
  • Hu Y, Hu F, Chen Y, et al. Shear force strategy for preparation of aligned silver nanowire transparent conductive thin films. Colloids Interface Sci Commun. 2023;52:100685. doi: 10.1016/j.colcom.2022.100685
  • Lin Z, Liu Y, Raghavan S, et al. Magnetic alignment of hexagonal boron nitride platelets in polymer matrix: toward high performance anisotropic polymer composites for electronic encapsulation. ACS Appl Mater Inter. 2013;5(15):7633–7640. doi: 10.1021/am401939z
  • Fan DL, Zhu FQ, Cammarata RC, et al. Electric tweezers. Nano Today. 2011;6(4):339–354. doi: 10.1016/j.nantod.2011.05.003
  • Schneider CA, Rasband WS, Eliceiri KW. NIH image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9(7):671–675. doi: 10.1038/nmeth.2089
  • Guarino V, Ambrosio L, Guaccio A, et al. Image processing and fractal box counting: user-assisted method for multi-scale porous scaffold characterization. J Mater Sci Mater Med. 2010;21:3109–3118. doi: 10.1007/s10856-010-4163-9
  • Restuccia L, Reggio A, Ferro GA, et al. Fractal analysis of crack paths into innovative carbon-based cementitious composites. Theor Appl Fract Mech. 2017;90:133–141. doi: 10.1016/j.tafmec.2017.03.016
  • Niendorf K, Raeymaekers B. Additive manufacturing of polymer matrix composite materials with aligned or organized Filler material: a review. Adv Eng Mater. 2021;23(4). doi: 10.1002/adem.202001002
  • Chen J, Liu X, Zeng XL, et al. A facile method to prepare oriented boron nitride-based polymer composite with enhanced thermal conductivity and mechanical properties. Compos Commun. 2022;29:101038. doi: 10.1016/j.coco.2021.101038
  • Niendorf K, Raeymaekers B. Combining ultrasound directed self-assembly and stereolithography to fabricate engineered polymer matrix composite materials with anisotropic electrical conductivity. Compos B Eng. 2021;223:109096. doi: 10.1016/j.compositesb.2021.109096
  • Sherman ZM, Ghosh D, Swan JW. Field-directed self-assembly of mutually polarizable nanoparticles. Langmuir. 2018;34(24):7117–7134. doi: 10.1021/acs.langmuir.8b01135
  • Dutta S, Singh AK, Gooh Pattader PS, et al. Genesis of electric field assisted microparticle assemblage in a dielectric fluid. J Fluid Mech. 2021;915. doi: 10.1017/jfm.2021.22
  • Park KR, Cho HB, Lim M, et al. Through-plane high thermal conducting networks via incorporation of graphene nanoplatelets in nanocomposite film under electric field and avoiding breakdown voltage. Appl Surface Sci. 2021;551:149201. doi: 10.1016/j.apsusc.2021.149201
  • Bishop KJM, Drews AM, Cartier CA, et al. Contact charge electrophoresis: fundamentals and microfluidic applications. Langmuir. 2018;34:6315–6327. doi: 10.1021/acs.langmuir.7b02946
  • Shen Z, Sulatchaneenopdon N, Furuno H, et al. Fabrication of H-shaped structure magnetorheological elastomer film for enhancing electrical properties by AC electric field. Adv Compos Hybrid Mater. 2023;6(6). doi: 10.1007/s42114-023-00803-4
  • Hossan MR, Dillon R, Roy AK, et al. Modeling and simulation of dielectrophoretic particle-particle interactions and assembly. J Colloid Interface Sci. 2013;394:619–629. doi: 10.1016/j.jcis.2012.12.039
  • Ahmed W, Kooij ES, Van Silfhout A, et al. Quantitative analysis of gold nanorod alignment after electric field-assisted deposition. Nano Lett. 2009;9(11):3786–3794. doi: 10.1021/nl901968e
  • Ai Y, Zeng Z, Qian S. Direct numerical simulation of AC dielectrophoretic particle-particle interactive motions. J Colloid Interface Sci. 2014;417:72–79. doi: 10.1016/j.jcis.2013.11.034
  • Stepanov GV, Bakhtiiarov AV, Lobanov DA, et al. Magnetoresistivity and piezoresistivity of magnetoactive elastomers. J Magn Magn Mater. 2023;587. doi: 10.1016/j.jmmm.2023.171313
  • Qi S, Guo H, Chen J, et al. Magnetorheological elastomers enabled high-sensitive self-powered tribo-sensor for magnetic field detection. Nanoscale. 2018;10(10):4745–4752. doi: 10.1039/C7NR09129J