1,068
Views
0
CrossRef citations to date
0
Altmetric
Focus On Dr. Ariga 60th Anniversary: From Nanotechnology to Nanoarchitectonics

Cell-derived nanomaterials for biomedical applications

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Article: 2315013 | Received 28 Nov 2023, Accepted 29 Jan 2024, Published online: 11 Mar 2024

References

  • Mohammadinejad R, Karimi S, Iravani S, et al. Plant-derived nanostructures: types and applications. Green Chem. 2016;18(1):20–25. doi: 10.1039/C5GC01403D
  • Lovley DR, Stolz JF, Nord GL Jr, et al. Anaerobic production of magnetite by a dissimilatory iron-reducing microorganism. Nature. 1987;330(6145):252–254. doi: 10.1038/330252a0
  • Govindasamy R, Gayathiri E, Sankar S, et al. Emerging trends of nanotechnology and genetic engineering in cyanobacteria to optimize production for future applications. Life. 2022;12(12):2013. doi: 10.3390/life12122013
  • Li BL, Zhang H, Li NB, et al. Materialistic interfaces with nucleic acids: principles and their impact. Adv Funct Mater. 2022;32(37):1–29. doi: 10.1002/adfm.202201172
  • Li Y, Cui R, Zhang P, et al. Mechanism-oriented controllability of intracellular quantum dots formation: the role of glutathione metabolic pathway. ACS Nano. 2013;7(3):2240–2248. doi: 10.1021/nn305346a
  • Lo Presti M, Vona D, Ragni R, et al. Perspectives on applications of nanomaterials from shelled plankton. MRS Commun. 2021;11(3):213–225. doi: 10.1557/s43579-021-00032-0
  • Nawaz MA, Zakharenko AM, Zemchenko IV, et al. Phytolith formation in plants: from soil to cell. Plants (Basel). 2019;8(8):249. doi: 10.3390/plants8080249
  • Akhtar MS, Panwar J, Yun Y-S. Biogenic synthesis of metallic nanoparticles by plant extracts. ACS Sustainable Chem Eng. 2013;1(6):591–602. doi: 10.1021/sc300118u
  • Zhang Q, Dehaini D, Zhang Y, et al. Neutrophil membrane-coated nanoparticles inhibit synovial inflammation and alleviate joint damage in inflammatory arthritis. Nat Nanotech. 2018;13(12):1182–1190. doi: 10.1038/s41565-018-0254-4
  • Kobylinska N, Shakhovsky A, Khainakova OK, et al. ‘Hairy’ root extracts as source for ‘green’ synthesis of silver nanoparticles and medical applications. RSC Adv. 2020;10:39434–39446. doi: 10.1039/D0RA07784D
  • Kong Q, Zhu Z, Xu Q, et al. Nature-inspired thylakoid-based photosynthetic nanoarchitectures for biomedical applications. Small Methods. 2023:2301143–2301162. doi: 10.1002/smtd.202301143
  • Gao W, Fang RH, Thamphiwatana S, et al. Modulating antibacterial immunity via bacterial membrane-coated nanoparticles. Nano Lett. 2015;15(2):1403–1409. doi: 10.1021/nl504798g
  • Ruiz-Hitzky E, Ariga K, Lvov YM. Bio-inorganic hybrid nanomaterials: strategies, synthesis, characterization and applications. Germany: John Wiley & Sons; 2008. https://books.google.ie/books?id=yN9XlxJazTUC&printsec=frontcover&dq=Bio-inorganic+Hybrid+Nanomaterials:+Strategies,+Synthesis,+Characterization+and+Applications&hl=&cd=1&source=gbs_api#v=onepage&q=Bio-inorganic%20Hybrid%20Nanomaterials%3A%20Strategies%2C%20Synthesis%2C%20Characterization%20and%20Applications&f=false
  • Elfick A, Rischitor G, Mouras R, et al. Biosynthesis of magnetic nanoparticles by human mesenchymal stem cells following transfection with the magnetotactic bacterial gene mms6. Sci Rep. 2017;7(1):39755. doi: 10.1038/srep39755
  • Tian L-J, Li W-W, Zhu T-T, et al. Directed biofabrication of nanoparticles through regulating extracellular electron transfer. J Am Chem Soc. 2017;139(35):12149–12152. doi: 10.1021/jacs.7b07460
  • Cohen S, Valm AM, Lippincott-Schwartz J. Interacting organelles. Curr Opinion Cell Biol. 2018;53:84–91. doi: 10.1016/j.ceb.2018.06.003
  • Boeynaems S, Alberti S, Fawzi NL, et al. Protein phase separation: a new phase in cell biology. Trends Cell Biol. 2018;28(6):420–435. doi: 10.1016/j.tcb.2018.02.004
  • Woodruff JB, Hyman AA, Boke E. Organization and function of non-dynamic biomolecular condensates. Trends Biochem Sci. 2018;43(2):81–94. doi: 10.1016/j.tibs.2017.11.005
  • Wang C, Yang J, Lu Y. Modularize and unite: toward creating a functional artificial cell. Front Mol Biosci. 2021;8. doi: 10.3389/fmolb.2021.781986
  • O’Connor C, Adams JU. Essentials of cell biology. Cambridge, MA: NPG Education; 2010.
  • Khoshmanesh K, Kouzani AZ, Nahavandi S, et al. At a glance: cellular biology for engineers. Comput Biol Chem. 2008;32(5):315–331. doi: 10.1016/j.compbiolchem.2008.07.010
  • Lin J, Yang K, New EJ. Strategies for organelle targeting of fluorescent probes. Org Biomol Chem. 2021;19(43):9339–9357. doi: 10.1039/D1OB01447A
  • Rolfe DFS, Brown GC. Cellular energy utilization and molecular origin of standard metabolic rate in mammals. Physiol Rev. 1997;77(3):731–758. doi: 10.1152/physrev.1997.77.3.731
  • Starnes DL, Jain A, Sahi SV. In planta engineering of gold nanoparticles of desirable geometries by modulating growth conditions: an environment-friendly approach. Environ Sci Technol. 2010;44(18):7110–7115. doi: 10.1021/es101136q
  • Elahian F, Reiisi S, Shahidi A, et al. High-throughput bioaccumulation, biotransformation, and production of silver and selenium nanoparticles using genetically engineered Pichia pastoris. Nanomedicine. 2017;13(3):853–861. doi: 10.1016/j.nano.2016.10.009
  • Zhang D, Wu T, Qin X, et al. Intracellularly generated immunological gold nanoparticles for combinatorial photothermal therapy and immunotherapy against tumor. Nano Lett. 2019;19(9):6635–6646. doi: 10.1021/acs.nanolett.9b02903
  • Gan PP, Li SFY. Potential of plant as a biological factory to synthesize gold and silver nanoparticles and their applications. Rev Environ Sci Bio/Technol. 2012;11(2):169–206. doi: 10.1007/s11157-012-9278-7
  • Barwal I, Ranjan P, Kateriya S, et al. Cellular oxido-reductive proteins of chlamydomonas reinhardtii control the biosynthesis of silver nanoparticles. J Nanobiotechnol. 2011;9(1):56. doi: 10.1186/1477-3155-9-56
  • Mann S, Frankel RB, Blakemore RP. Structure, morphology and crystal growth of bacterial magnetite. Nature. 1984;310(5976):405–407. doi: 10.1038/310405a0
  • Smith PR, Holmes JD, Richardson DJ, et al. Photophysical and photochemical characterisation of bacterial semiconductor cadmium sulfide particles. J Chem Soc Faraday Trans. 1998;94(9):1235–1241. doi: 10.1039/a708742j
  • Kröger N, Deutzmann R, Sumper M. Polycationic peptides from diatom biosilica that direct silica nanosphere formation. Science. 1999;286(5442):1129–1132. doi: 10.1126/science.286.5442.1129
  • Rosenfeldt S, Riese CN, Mickoleit F, et al. Probing the nanostructure and arrangement of bacterial magnetosomes by small-angle X-Ray scattering. Appl environ microbiol. 2019;85(24):e01513–19. doi: 10.1128/AEM.01513-19
  • Abdelmoneim HM, Taha TH, Elnouby MS, et al. Extracellular biosynthesis, OVAT/statistical optimization, and characterization of silver nanoparticles (AgNPs) using Leclercia adecarboxylata THHM and its antimicrobial activity. Microb Cell Factories. 2022;21(1):277. doi: 10.1186/s12934-022-01998-9
  • Saifuddin N, Wong CW, Yasumira AAN. Rapid biosynthesis of silver nanoparticles using culture supernatant of bacteria with microwave irradiation. E-J Chem. 2009;6(1):61–70. doi: 10.1155/2009/734264
  • Anandan M, Poorani G, Boomi P, et al. Green synthesis of anisotropic silver nanoparticles from the aqueous leaf extract of Dodonaea viscosa with their antibacterial and anticancer activities. Process Biochem. 2019;80:80–88. doi: 10.1016/j.procbio.2019.02.014
  • Prakash P, Gnanaprakasam P, Emmanuel R, et al. Green synthesis of silver nanoparticles from leaf extract of Mimusops elengi, Linn. For enhanced antibacterial activity against multi drug resistant clinical isolates. Colloids Surf B Biointerfaces. 2013;108:255–259. doi: 10.1016/j.colsurfb.2013.03.017
  • Iravani S. Green synthesis of metal nanoparticles using plants. Green Chem. 2011;13(10):2638–2650. doi: 10.1039/C1GC15386B
  • Devi TB, Ahmaruzzaman M. Bio-inspired facile and green fabrication of Au@Ag@AgCl core–double shells nanoparticles and their potential applications for elimination of toxic emerging pollutants: a green and efficient approach for wastewater treatment. Chem Eng J. 2017;317:726–741. doi: 10.1016/j.cej.2017.02.082
  • Ishigami T, Suga K, Umakoshi H. Chiral recognition of L-Amino acids on liposomes prepared with L-Phospholipid. ACS Appl Mater Interfaces. 2015;7(38):21065–21072. doi: 10.1021/acsami.5b07198
  • Li BL, Luo JJ, Zou HL, et al. Chiral nanocrystals grown from MoS(2) nanosheets enable photothermally modulated enantioselective release of antimicrobial drugs. Nat Commun. 2022;13(1):7289. doi: 10.1038/s41467-022-35016-8
  • Simons K, Gerl MJ. Revitalizing membrane rafts: new tools and insights. Nat Rev Mol Cell Biol. 2010;11:688–699. doi: 10.1038/nrm2977
  • Handa M, Beg S, Shukla R, et al. Recent advances in lipid-engineered multifunctional nanophytomedicines for cancer targeting. JCR. 2021;340:48–59. doi: 10.1016/j.jconrel.2021.10.025
  • Kolašinac R, Jaksch S, Dreissen G, et al. Influence of environmental conditions on the fusion of cationic liposomes with living mammalian cells. 2019;9(7):1025. doi: 10.3390/nano9071025
  • Krammer F, Schinko T, Palmberger D, et al. Trichoplusia ni cells (High FiveTM) are highly efficient for the production of influenza a virus-like particles: a comparison of two insect cell lines as production platforms for influenza vaccines. Mol Biotechnol. 2010;45(3):226–234. doi:10.1007/s12033-010-9268-3
  • Adigun OO, Novikova G, Retzlaff-Roberts EL, et al. Decoupling and elucidation of surface-driven processes during inorganic mineralization on virus templates. J Colloid Interface Sci. 2016;483:165–176. doi: 10.1016/j.jcis.2016.07.028
  • Hildebrand M. Biological processing of nanostructured silica in diatoms. Prog Org Coat. 2003;47(3):256–266. doi: 10.1016/S0300-9440(03)00142-5
  • Dujardin E, Mann S. Bio‐inspired materials chemistry. Adv Mater. 2002;14(11):775–788. doi: 10.1002/1521-4095(20020605)14:11<775::AID-ADMA775>3.0.CO;2-0
  • Xiong L-H, Tu J-W, Zhang Y-N, et al. Designer cell-self-implemented labeling of microvesicles in situ with the intracellular-synthesized quantum dots. Sci China Chem. 2020;63(4):448–453. doi: 10.1007/s11426-019-9697-2
  • Das RK, Pachapur VL, Lonappan L, et al. Biological synthesis of metallic nanoparticles: plants, animals and microbial aspects. Nanotech Env Eng. 2017;2(18). doi: 10.1007/s41204-017-0029-4
  • Zhu H, Zan W, Chen W, et al. Defect‐rich molybdenum sulfide quantum dots for amplified photoluminescence and photonics‐driven reactive oxygen species generation. Nanoscale Horiz. 2022;34(31). doi: 10.1002/adma.202200004
  • Zhu H, Huang S, Ding M, et al. Sulfur defect-engineered biodegradable cobalt sulfide quantum dot-driven photothermal and chemodynamic anticancer therapy. ACS Appl Mater Interfaces. 2022;14(22):25183–25196. doi: 10.1021/acsami.2c05170
  • Cao H, Dan Z, He X, et al. Liposomes coated with isolated macrophage membrane can target lung metastasis of breast cancer. ACS Nano. 2016;10(8):7738–7748. doi: 10.1021/acsnano.6b03148
  • Bergin IL, Witzmann FA. Nanoparticle toxicity by the gastrointestinal route: evidence and knowledge gaps. J Biomed Nanosci Nanotechnol. 2013;3(1–2):163–210. doi: 10.1504/IJBNN.2013.054515
  • Aird WC. Phenotypic heterogeneity of the endothelium: I. Structure, function, and mechanisms. Circ Res. 2007;100(2):158–173. doi: 10.1161/01.RES.0000255691.76142.4a
  • Baldwin AL, Thurston G. Mechanics of endothelial cell architecture and vascular permeability. Crit Rev Biomed Eng. 2001;29(2):247–278. doi: 10.1615/critrevbiomedeng.v29.i2.20
  • Shen X, Ariga K. Disease diagnosis with chemosensing, artificial intelligence, and prospective contributions of nanoarchitectonics. Chemosensors. 2023;11(10):528–547. doi: 10.3390/chemosensors11100528
  • Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–674. doi: 10.1016/j.cell.2011.02.013
  • Fang J, Nakamura H, Maeda H. The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv Drug Deliv Rev. 2011;63(3):136–51. doi: 10.1016/j.addr.2010.04.009
  • Tee JK, Yip LX, Tan ES, et al. Nanoparticles’ interactions with vasculature in diseases. Chem Soc Rev. 2019;48:5381–5407. doi: 10.1039/C9CS00309F
  • Setyawati MI, Tay CY, Docter D, et al. Understanding and exploiting nanoparticles’ intimacy with the blood vessel and blood. Chem Soc Rev. 2015;44(2):8174–8199. doi: 10.1038/s41565-018-0356-z
  • Atukorale PU, Covarrubias G, Bauer L, et al. Vascular targeting of nanoparticles for molecular imaging of diseased endothelium. Adv Drug Deliv Rev. 2017;113:141–156. doi: 10.1016/j.addr.2016.09.006
  • Peng F, Setyawati MI, Tee JK, et al. Nanoparticles promote in vivo breast cancer cell intravasation and extravasation by inducing endothelial leakiness. Nat Nanotech. 2019;14(3):279–286. doi: 10.1038/s41565-018-0356-z
  • Chung BL, Toth MJ, Kamaly N, et al. Nanomedicines for endothelial disorders. Nano Today. 2015;10(6):759–776. doi: 10.1016/j.nantod.2015.11.009
  • Setyawati MI, Wang Q, Ni N, et al. Engineering tumoral vascular leakiness with gold nanoparticles. Nat Commun. 2023;14(1):4269. doi: 10.1038/s41467-023-40015-4
  • Wang Q, Liang Q, Dou J, et al. Breaking through the basement membrane barrier to improve nanotherapeutic delivery to tumours. Nat Nanotech. 2023. doi:10.1038/s41565-023-01498-w.
  • Ni N, Wang W, Sun Y, et al. Inducible endothelial leakiness in nanotherapeutic applications. Biomaterial. 2022:287. doi: 10.1016/j.biomaterials.2022.121640
  • Greenwald J, Riek R. Biology of amyloid: structure, function, and regulation. Structure. 2010;18(10):1244–1260. doi: 10.1016/j.str.2010.08.009
  • Li Y, Ni N, Lee M, et al. Endothelial leakiness elicited by amyloid protein aggregation. Nature Comms. 2024;15(1): 613–629. doi: 10.1038/s41467-024-44814-1
  • Liu Q, Wu D, He B, et al. Attenuating endothelial leakiness with self-assembled DNA nanostructures for pulmonary arterial hypertension. Nanoscale Horiz. 2023;8(2):270–278. doi: 10.1039/d2nh00348a
  • Goñi FM. The basic structure and dynamics of cell membranes: an update of the singer–Nicolson model. Biochim Biophys Acta – Biomembr. 2014;1838(6):1467–1476. doi: 10.1016/j.bbamem.2014.01.006
  • Hu CMJ, Zhang L, Aryal S, et al. Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. PNAS. 2011;108(27):10980–10985. doi: 10.1073/pnas.1106634108
  • Rao L, Bu L-L, Xu J-H, et al. Red blood cell membrane as a biomimetic nanocoating for prolonged circulation time and reduced accelerated blood clearance. Small. 2015;11(46):6225–6236. doi: 10.1002/smll.201502388
  • Gao W, Hu CMJ, Fang RH, et al. Surface functionalization of gold nanoparticles with red blood cell membranes. Adv Mater. 2013;25(26):3549–3553. doi: 10.1002/adma.201300638
  • Hu CMJ, Fang RH, Wang KC, et al. Nanoparticle biointerfacing by platelet membrane cloaking. Nature. 2015;526(7571):118–121. doi: 10.1038/nature15373
  • Parodi A, Quattrocchi N, van de Ven AL, et al. Synthetic nanoparticles functionalized with biomimetic leukocyte membranes possess cell-like functions. Nat Nanotech. 2013;8(1):61–8. doi: 10.1038/nnano.2012.212
  • Teo KYW, Sevencan C, Cheow YA, et al. Macrophage polarization as a facile strategy to enhance efficacy of macrophage membrane‐coated nanoparticles in osteoarthritis. Small Sci. 2022;2(4):2100116–2100116. doi: 10.1002/smsc.202100116
  • Toledano Furman NE, Lupu-Haber Y, Bronshtein T, et al. Reconstructed stem cell nanoghosts: a natural tumor targeting platform. Nano Lett. 2013;13(7):3248–3255. doi: 10.1021/nl401376w
  • Zhu JY, Zheng DW, Zhang MK, et al. Preferential cancer cell self-recognition and tumor self-targeting by coating nanoparticles with homotypic cancer cell membranes. Nano Lett. 2016;16(9):5895–5901. doi: 10.1021/acs.nanolett.6b02786
  • De Zorzi R, Mi W, Liao M, et al. Single-particle electron microscopy in the study of membrane protein structure. Microscopy (Tokyo). 2016;65(1):81–96. doi: 10.1093/jmicro/dfv058
  • Lehninger AL, Nelson DL, Cox MM, editors. Lehninger principles of biochemistry. In Principles of biochemistry. 5th ed. New York: W.H. Freeman; 2008. p. 71–112.
  • Fang RH, Hu CMJ, Chen KNH, et al. Lipid-insertion enables targeting functionalization of erythrocyte membrane-cloaked nanoparticles. Nanoscale. 2013;5(19):8884–8888. doi: 10.1039/c3nr03064d
  • Dehaini D, Wei X, Fang RH, et al. Erythrocyte–platelet hybrid membrane coating for enhanced nanoparticle functionalization. Adv Mater. 2017;29(16):1–8. doi: 10.1002/adma.201606209
  • de Ávila B E-F, Angsantikul P, Ramírez-Herrera DE, et al. Hybrid biomembrane–functionalized nanorobots for concurrent removal of pathogenic bacteria and toxins. Sci Rob. 2018;3(18):eaat0485. doi:10.1039/c3nr03064d
  • Rao L, Meng QF, Huang Q, et al. Platelet–leukocyte hybrid membrane-coated immunomagnetic beads for highly efficient and highly specific isolation of circulating tumor cells. Adv Funct Mater. 2018;28(34):1–9. doi: 10.1002/adfm.201803531
  • Li H, Jin K, Luo M, et al. Size dependency of circulation and biodistribution of biomimetic nanoparticles: red blood cell membrane-coated nanoparticles. Cells. 2019;8(8). doi: 10.3390/cells8080881
  • Zhu J, Sevencan C, Zhang M, et al. Increasing the potential interacting area of nanomedicine enhances its homotypic cancer targeting efficacy. ACS Nano. 2020;14(3):3259–3271. doi: 10.1021/acsnano.9b08798
  • Liu L, Bai X, Martikainen M-V, et al. Cell membrane coating integrity affects the internalization mechanism of biomimetic nanoparticles. Nat Commun. 2021;12(1):5726. doi: 10.1038/s41467-021-26052-x
  • Ochoa-Villarreal M, Howat S, Hong S et al. Plant cell culture strategies for the production of natural products. BMB Rep. 2016;49(3):149–158. doi:10.5483/BMBRep.2016.49.3.264
  • Kowalczyk T, Merecz-Sadowska A, Picot L, et al. Genetic manipulation and bioreactor culture of plants as a tool for industry and its applications. Molecules. 2022;27(3):795–823. doi: 10.3390/molecules27030795
  • Joglekar S, Kodam K, Dhaygude M, et al. Novel route for rapid biosynthesis of lead nanoparticles using aqueous extract of Jatropha curcas L. latex. Mater Lett. 2011;65(19–20):3170–3172. doi:10.1021/acs.chemrev.6b00002
  • Xie J, Lee JY, Wang DI, et al. Identification of active biomolecules in the high‐yield synthesis of single‐crystalline gold nanoplates in algal solutions. Small. 2007;3(4):672–682. doi:10.1002/smll.200600612
  • Jebril S, Khanfir Ben Jenana R, Dridi C. Green synthesis of silver nanoparticles using Melia azedarach leaf extract and their antifungal activities: in vitro and in vivo. Materials Chemistry & Physics. 2020;248:122898. doi: 10.1016/j.matchemphys.2020.122898
  • Gedda G, Sankaranarayanan SA, Putta CL, et al. Green synthesis of multi-functional carbon dots from medicinal plant leaves for antimicrobial, antioxidant, and bioimaging applications. Sci Rep. 2023;13. doi: 10.1038/s41598-023-33652-8
  • Safdar M, Kim W, Park S, et al. Engineering plants with carbon nanotubes: a sustainable agriculture approach. J Nanobiotechnol. 2022 20;20(1). 10.1186/s12951-022-01483-w
  • Gnawali CL, Shrestha LK, Hill JP, et al. Nanoporous activated carbon material from Terminalia chebula seed for supercapacitor application. C. 2023;9(4). doi: 10.3390/c9040109
  • Shrestha RL, Chaudhary R, Shrestha T, et al. Nanoarchitectonics of lotus seed derived nanoporous carbon materials for supercapacitor applications. Materials. 2020;13(23):5434–5447. doi: 10.3390/ma13235434
  • Shen Q, Huang Y, Bai H, et al. Polymer materials synthesized through Cell-mediated polymerization strategies for regulation of biological functions. Acc Mater Res. 2023;4(1):57–70. doi: 10.1021/accountsmr.2c00194
  • Tu W, Zhou Y, Zou Z. Photocatalytic conversion of CO(2) into renewable hydrocarbon fuels: state-of-the-art accomplishment, challenges, and prospects. Adv Mater. 2014;26(27):4607–4626. doi: 10.1002/adma.201400087
  • Mirkovic T, Ostroumov EE, Anna JM, et al. Light absorption and energy transfer in the antenna complexes of photosynthetic organisms. Chem Rev. 2017;117(2):249–293. doi: 10.1021/acs.chemrev.6b00002
  • Wise RR. Plastids: the anabolic factories of plant cells. Encyclopedia Of Cell Biology. 2016;1:324–330.
  • Khorobrykh S, Havurinne V, Mattila H, et al. Oxygen and ROS in photosynthesis. Plants (Basel). 2020;9(1). doi: 10.3390/plants9010091
  • Ouyang J, Wang L, Chen W, et al. Biomimetic nanothylakoids for efficient imaging-guided photodynamic therapy for cancer. Chem Commun (Camb). 2018;54(28):3468–3471. doi: 10.1039/C8CC00674A
  • Liu H, Lei Y, Nie W, et al. Immunomodulatory hybrid bio-nanovesicle for self-promoted photodynamic therapy. Nano Res. 2022. doi:10.1007/s12274-021-4050-3.
  • Hou L, Gong X, Yang J, et al. Hybrid-membrane-decorated Prussian blue for effective cancer immunotherapy via tumor-associated macrophages polarization and hypoxia relief. Adv Mater. 2022;34(14):e2200389. doi: 10.1002/adma.202200389
  • Zheng D, Li B, Xu L, et al. Normalizing Tumor microenvironment based on photosynthetic abiotic/biotic Nanoparticles. ACS Nano. 2018;12(6):6218–6227. doi: 10.1021/acsnano.8b02977
  • Zheng DW, Xu L, Li CX, et al. Photo-powered artificial organelles for ATP generation and life-sustainment. Adv Mater. 2018;30(52):e1805038. doi: 10.1002/adma.201805038
  • Chen P, Liu X, Gu C, et al. A plant-derived natural photosynthetic system for improving cell anabolism. Nature. 2022;612(7940):546–554. doi: 10.1038/s41586-022-05499-y
  • Pucci C, Martinelli C, Degl’Innocenti A, et al. Light‐activated biomedical applications of chlorophyll derivatives. Macromol biosci. 2021;21(9):2100181. doi: 10.1002/mabi.202100181
  • Chen M. Chlorophylls d and f: synthesis, occurrence, light-harvesting, and pigment organization in chlorophyll-binding protein complexes. In: Bernhard G, editor. Metabolism, Structure and Function of Plant Tetrapyrroles: Introduction, Microbial and Eukaryotic Chlorophyll Synthesis and Catabolism. London: Academic Press; 2019. p. 121–139.
  • Murchie EH, Lawson T. Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications. J Exp Bot. 2013;64(13):3983–3998. doi: 10.1093/jxb/ert208
  • Ruiz-Hitzky E, Darder M, Aranda P, et al. Advances in biomimetic and nanostructured biohybrid materials. Adv Mater. 2010;22(3):323–336. doi: 10.1002/adma.200901134
  • Sakakibara K, Granström M, Kilpeläinen I, et al. Light-harvesting nanorods based on pheophorbide-appending cellulose. Biomacromolecules. 2013;14(9):3223–3230. doi: 10.1021/bm400858v
  • Pucci C, Martinelli C, Degl’innocenti A, et al. Light-activated biomedical applications of chlorophyll derivatives. Macromol biosci. 2021;21(9):2100181. doi: 10.1002/mabi.202100181
  • Li X, Kwon N, Guo T, et al. Innovative strategies for hypoxic-tumor photodynamic therapy. Angew Chem Int Ed. 2018;57(36):11522–11531. doi: 10.1002/anie.201805138
  • Ethirajan M, Chen Y, Joshi P, et al. The role of porphyrin chemistry in tumor imaging and photodynamic therapy. Chem Soc Rev. 2011;40(1):340–362. doi: 10.1039/B915149B
  • Lanfer-Marquez UM, Barros RMC, Sinnecker P. Antioxidant activity of chlorophylls and their derivatives. Food Res Int. 2005;38(8–9):885–891. doi: 10.1016/j.foodres.2005.02.012
  • Perez-Galvez A, Viera I, Roca M. Carotenoids and chlorophylls as antioxidants. Antioxidants (Basel). 2020;9(6). doi: 10.3390/antiox9060505
  • Calixto GM, Bernegossi J, de Freitas LM, et al. Nanotechnology-based drug delivery systems for photodynamic therapy of cancer: a review. Molecules. 2016;21(3):342. doi: 10.3390/molecules21030342
  • Brandis AS, Salomon Y, Scherz A, et al. Chlorophyll sensitizers in photodynamic therapy. In: Grimm B, editor. Chlorophylls and bacteriochlorophylls. Dordrecht: Springer Netherlands; 2006. p. 461–483.
  • Gerola AP, Santana A, França PB, et al. Effects of metal and the phytyl chain on chlorophyll derivatives: physicochemical evaluation for photodynamic inactivation of microorganisms. Photochem Photobiol. 2011;87(4):884–894. doi: 10.1111/j.1751-1097.2011.00935.x
  • Chernomorsky S, Segelman A, Poretz RD. Effect of dietary chlorophyll derivatives on mutagenesis and tumor cell growth. Teratog Carcinog Mutagen. 1999;19(5):313–322. doi: 10.1002/(SICI)1520-6866(1999)19:5<313::AID-TCM1>3.0.CO;2-G
  • Hajri A, Wack S, Meyer C, et al. In vitro and in vivo efficacy of Photofrin® and pheophorbide a, a bacteriochlorin, in photodynamic therapy of colonic cancer Cells. Photochem Photobiol. 2007;75(2):140–148. doi: 10.1562/0031-8655(2002)0750140IVAIVE2.0.CO2
  • Rizzi V, Fini P, Fanelli F, et al. Molecular interactions, characterization and photoactivity of chlorophyll a/chitosan/2-HP-β-cyclodextrin composite films as functional and active surfaces for ROS production. Food Hydrocolloids. 2016;58:98–112. doi: 10.1016/j.foodhyd.2016.02.012
  • Rizzi V, Fini P, Semeraro P, et al. Detailed investigation of ROS arisen from chlorophyll a/chitosan based-biofilm. Colloids Surf B. 2016;142:239–247. doi: 10.1016/j.colsurfb.2016.02.062
  • Suvorov N, Pogorilyy V, Diachkova E, et al. Derivatives of natural chlorophylls as agents for antimicrobial photodynamic therapy. Int J Mol Sci. 2021;22(12):6392. doi: 10.3390/ijms22126392
  • Dashwood R, Negishi T, Hayatsu H, et al. Chemopreventive properties of chlorophylls towards aflatoxin B1: a review of the antimutagenicity and anticarcinogenicity data in rainbow trout. Mutat Res. 1998;399(2):245–253. doi: 10.1016/S0027-5107(97)00259-5