351
Views
0
CrossRef citations to date
0
Altmetric
Optical, magnetic and electronic device materials

Theoretically designed M@diaza[2.2.2]cryptand complexes: the role of non-covalent interactions in promoting NLO properties of organic electrides

ORCID Icon, , ORCID Icon & ORCID Icon
Article: 2357064 | Received 15 Mar 2024, Accepted 14 May 2024, Published online: 03 Jun 2024

References

  • Anis M, Muley GG, Hakeem A, et al. Exploring the influence of carboxylic acids on nonlinear optical (NLO) and dielectric properties of KDP crystal for applications of NLO facilitated photonic devices. Opt Mater. 2015;46:517–15. doi: 10.1016/j.optmat.2015.04.064
  • Wu J, Luo AKY, Jen J. High-performance organic second- and third-order nonlinear optical materials for ultrafast information processing. J Mater Chem C. 2020;8(43):15009–15026. doi: 10.1039/D0TC03224G
  • Luo X, Li Z, Guo Y, et al. Recent progress on new infrared nonlinear optical materials with application prospect. J Solid State Chem. 2019;270:674–685. doi: 10.1016/j.jssc.2018.12.036
  • Maiman TH. Stimulated optical radiation in ruby. Nature. 1960;187(4736):493–494. doi: 10.1038/187493a0
  • Gauvin S, Zyss J. Growth of organic crystalline thin films, their optical characterization and application to non-linear optics. J Cryst Growth. 1996;166(1–4):507–527. doi: 10.1016/0022-0248(96)00078-4
  • E Kalsoom U, Yi R, Qu J, et al. Nonlinear optical properties of CdSe and CdTe core-shell quantum dots and their applications. Front Phys. 2021;9:612070. doi: 10.3389/fphy.2021.612070
  • Wang L-Y, Shi B-Y, Yao C-B, et al. Size and morphology modulation in ZnO nanostructures for nonlinear optical applications: a review. ACS Appl Nano Mater. 2023;6(12):9975–10014. doi: 10.1021/acsanm.3c01509
  • Shen HY, He L, Shi PP, et al. Lead-free organic–inorganic hybrid semiconductors and NLO switches tuned by dimensional design. J Mater Chem C. 2021;9(12):4338–4343. doi: 10.1039/D1TC00278C
  • Notake T, Takeda M, Okada S, et al. Characterization of all second-order nonlinear-optical coefficients of organic N-benzyl-2-methyl-4-nitroaniline crystal. Sci Rep. 2019;9(1):14853. doi: 10.1038/s41598-019-50951-1
  • Zheng Y, Cheng P, Qian X, et al. Self-assembled organic nonlinear optical crystals based on pyridine derived fluorenone. Mater Chem Front. 2023;7(4):698–704. doi: 10.1039/D2QM01173E
  • Ivanova BB, Spiteller M. Noncentrosymmetric crystals with marked nonlinear optical properties. J Phys Chem A. 2010;114(15):5099–5103. doi: 10.1021/jp1002758
  • Jiang X, Zhao S, Lin Z, et al. The role of dipole moment in determining the nonlinear optical behavior of materials: ab initio studies on quaternary molybdenum tellurite crystals. J Mater Chem C. 2014;2(3):530–537. doi: 10.1039/C3TC31872A
  • Geskin VM, Lambert C, Bredas JL. Origin of high second- and third-order nonlinear optical response in ammonio/borato diphenylpolyene zwitterions: the remarkable role of polarized aromatic groups. J Am Chem Soc. 2003;125(50):15651. doi: 10.1021/ja035862p
  • Jeewandara AK, de Silva KMN. Are donor–acceptor self organised aromatic systems NLO (non-linear optical) active? J Mol Struct Theochem. 2004;686(1–3):131–136. doi: 10.1016/j.theochem.2004.08.023
  • Liu ZB, Zhou ZJ, Li Y, et al. Push–pull electron effects of the complexant in a Li atom doped molecule with electride character: a new strategy to enhance the first hyperpolarizability. Phys Chem Chem Phys. 2010;12(35):10562. doi: 10.1039/c004262e
  • Wang S, Dong Y, He C, et al. The role of sp2/sp3 hybrid carbon regulation in the nonlinear optical properties of graphene oxide materials. RSC Adv. 2017;7(84):53643–53652. doi: 10.1039/C7RA10505C
  • Wang SJ, Wang YF, Cai C. Multidecker sandwich complexes V n Ben n +1 (n = 1, 2, 3) as stronger electron donor relative to ferrocene for designing high-performance organometallic second-order NLO chromophores: Evident layer effect on the first hyperpolarizability and two-dimensional NLO character. J Phys Chem C. 2015;119(10):5589–5595. doi: 10.1021/jp5123272
  • Maury O, Le Bozec H. Molecular engineering of octupolar NLO molecules and materials based on bipyridyl metal complexes. Acc Chem Res. 2005;38(9):691–704. doi: 10.1021/ar020264l
  • Murugan NA, Kongsted J, Rinkevicius Z, et al. Breakdown of the first hyperpolarizability/bond-length alternation parameter relationship. Proc Natl Acad Sci USA. 2010;107(38):16453–16458. doi: 10.1073/pnas.1006572107
  • Shakerzadeh E, Tahmasebi E, Solimannejad M, et al. Tuning the electronic-optical properties of porphyrin-like porous C 24 N 24 fullerene with (Li 3 O) n = (1–5) decoration, a computational study. Appl Organomet Chem. 2019;33(1):1–9. doi: 10.1002/aoc.4654
  • Ahsin A, Ayub K. Oxacarbon superalkali C3X3Y3 (X = O, S andY = Li, Na,K) clusters as excess electron compounds for remarkable static and dynamic NLO response. J Mol Graph Model. 2021;106:107922. doi: 10.1016/j.jmgm.2021.107922
  • Ahsin A, Ali A, Ayub K. Alkaline earth metals serving as source of excess electron for alkaline earth metals to impart large second and third order nonlinear optical response; a DFT study. J Mol Graph Model. 2020;101:107759. doi: 10.1016/j.jmgm.2020.107759
  • He HM, Li Y, Sun WM, et al. All-metal electride molecules CuAg@Ca 7 M (M = Be, Mg, and Ca) with multi-excess electrons and all-metal polyanions: molecular structures and bonding modes as well as large infrared nonlinear optical responses. Dalton Trans. 2016;45(6):2656–2665. doi: 10.1039/C5DT04530D
  • Zhong R-L, Xu H-L, Li Z-R, et al. Role of excess electrons in nonlinear optical response. J Phys Chem Lett. 2015;6(4):612–619. doi: 10.1021/jz502588x
  • Maqbool H, Rafique A, Bhatti IA, et al. Novel endohedrally and exohedrally metals (Li, Na, and K, Ag) doped (15-crown-5) with remarkable electronic, static and dynamic NLO response. Optik. 2022;271:170169. doi: 10.1016/j.ijleo.2022.170169
  • Ahsin A, Ali A, Ayub K. Transition metals based metalides TM-Janus-TM (where TM=Sc–Zn and Janus=F6C6H6); a theoretical study of nonconventional metalides with excellent static and dynamic nonlinear optical properties. Mater Sci Semicond Process. 2023;162:107506. doi: 10.1016/j.mssp.2023.107506
  • Sun WM, Ni BL, Wu D, et al. Designing Alkalides with considerable nonlinear optical responses and high stability based on the facially polarized Janus all-cis-1,2,3,4,5,6-Hexafluorocyclohexane. Organometal. 2017;36:3352–3359. doi: 10.1021/acs.organomet.7b00491
  • Ahsan A, Ayub K. Extremely large nonlinear optical response and excellent electronic stability of true alkaline earthides based on hexaammine complexant. J Mol Liq. 2020;297:111899. doi: 10.1016/j.molliq.2019.111899
  • Ahsin A, Ayub K. Superalkali-based alkalides Li3O@[12-crown-4]M (where M= Li, Na, and K) with remarkable static and dynamic NLO properties; a DFT study. Mater Sci Semicond Process. 2022;138:106254. doi: 10.1016/j.mssp.2021.106254
  • Ahsan A, Ayub K. Adamanzane based alkaline earthides with excellent nonlinear optical response and ultraviolet transparency. Opt Laser Technol. 2020;129:106298. doi: 10.1016/j.optlastec.2020.106298
  • Zhu L, Xue K, Hou J. A theoretical study of alkaline-earthides Li(NH3)4M(M= Be, Mg, Ca) with large first hyperpolarizability. J Mol Model. 2019;25(6):150. doi: 10.1007/s00894-019-4042-3
  • Li Z, Yang J, Hou JG, et al. Inorganic electride: theoretical study on structural and electronic properties. J Am Chem Soc. 2003;125(20):6050–6051. doi: 10.1021/ja034020n
  • Khaliq F, Mahmood T, Ayub K, et al. Exploring Li4N and Li4O superalkalis as efficient dopants for the Al12N12 nanocage to design high performance nonlinear optical materials with high thermodynamic stability. Polyhedron. 2021;200:115145. doi: 10.1016/j.poly.2021.115145
  • Hu Q, Tan R, Li J, et al. Highly conductive C12A7e− electride nanoparticles as an electron donor type promoter to P25 for enhancing photocatalytic hydrogen evolution. J Phys Chem Solids. 2021;149:109810. doi: 10.1016/j.jpcs.2020.109810
  • Dale SG, Otero-de-la-Roza A, Johnson ER. Density-functional description of electrides. Phys Chem Chem Phys. 2014;16(28):14584. doi: 10.1039/C3CP55533J
  • Redko MY, Jackson JE, Huang RH, et al. Design and synthesis of a thermally stable organic electride. J Am Chem Soc. 2005;127(35):12416–12422. doi: 10.1021/ja053216f
  • Wajid S, Kosar N, Ullah F, et al. Demonstrating the potential of alkali metal-doped cyclic C6O6Li6 organometallics as electrides and high-performance NLO materials. ACS Omega. 2021;6(44):29852–29861. doi: 10.1021/acsomega.1c04349
  • Kosar N, Zari L, Ayub K, et al. Static, dynamic nonlinear optical (NLO) response and electride characteristics of superalkalis doped star like C6S6Li6. Surf Interfaces. 2002;31:102044. doi: 10.1016/j.surfin.2022.102044
  • Taschner IS, Walker TL, Schrage BR, et al. Topomeric aza/thia cryptands: synthesis and theoretical aspects of in/out isomerism using n-alkyl bridging. Org Chem Front. 2020;7(9):1164–1176. doi: 10.1039/D0QO00123F
  • Han Y, Jiang Y, Chen C-F. Cryptand-based hosts for organic guests. Tetrahedron. 2015;71(4):503–522. doi: 10.1016/j.tet.2014.11.006
  • Dietrich B, Lehn JM, Sauvage JP. Diaza-polyoxa-macrocycles et macrobicycles. Tetrahedron Lett. 1969;10(34):2885–2888. doi: 10.1016/S0040-4039(01)88299-X
  • Maqsood N, Asif A, Ayub K, et al. DFT study of alkali and alkaline earth metal-doped benzocryptand with remarkable NLO properties. RSC Adv. 2022;12(25):16029–16045. doi: 10.1039/D2RA02209E
  • Huang RH, Faber MK, Moeggenborg KJ, et al. Structure of K+(cryptand[2.2.2J) electride and evidence for trapped electron pairs. Nature. 1988;331(6157):599–601. doi: 10.1038/331599a0
  • Tehan FJ, Barnett BL, Dye JL, et al. Alkali anions. Preparation and crystal structure of a compound which contains the cryptated sodium cation and the sodium anion. J Am Chem Soc. 1974;96(23):7203–7208. doi: 10.1021/ja00830a005
  • Dye JL. Electrides: early examples of quantum confinement. Acc Chem Res. 2009;42(10):1564–1572. doi: 10.1021/ar9000857
  • Cao J, Li F, Xia W, et al. Interactions in bimolecular reactions. Chin J Chem Phys. 2019;32(2):157–166. doi: 10.1063/1674-0068/cjcp1901007
  • Shen Z, Ma H, Zhang C, et al. Dynamical importance of van der Waals saddle and excited potential surface in C(1D)+D2 complex-forming reaction. Nat Commun. 2017;8(1):14094. doi: 10.1038/ncomms14094
  • Frisch MJ, Trucks GW, Schlegel HB, et al. Gaussian 16, Revision A.03. Wallingford CT: Gaussian, Inc; 2016.
  • Neese F, Wennmohs F, Becker U, et al. The ORCA quantum chemistry program package. J Chem Phys. 2020;152(22):224108. doi: 10.1063/5.0004608
  • Chai J-D, Head-Gordon M. Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys Chem Chem Phys. 2008;10(44):6615–6620. doi: 10.1039/b810189b
  • Pérez P, Toro-Labbé A, Contreras R. Solvent effects on electrophilicity. J Am Chem Soc. 2001;123(23):5527–5531. doi: 10.1021/ja004105d
  • Chermette H. Chemical reactivity indexes in density functional theory. J Comput Chem. 1999;20(1):129–154. doi: 10.1002/(SICI)1096-987X(19990115)20:1<129:AID-JCC13>3.0.CO;2-A
  • Castet F, Rodriguez V, Pozzo JL, et al. Design and characterization of molecular nonlinear optical switches. Acc Chem Res. 2013;46(11):2656. doi: 10.1021/ar4000955
  • Asselberghs I, Flors C, Ferrighi L, et al. Second-harmonic generation in GFP-like proteins. J Am Chem Soc. 2008;130(46):15713–15719. doi: 10.1021/ja805171q
  • Cukrowski I, de Lange JH, Adeyinka AS, et al. Evaluating common QTAIM and NCI interpretations of the electron density concentration through IQA interaction energies and 1D cross-sections of the electron and deformation density distributions. Comput Theory Chem. 2015;1053:60–76. doi: 10.1016/j.comptc.2014.10.005
  • Lu T, Chen, FW. Multiwfn: A multifunctional wavefunction analyzer. J Comput Chem. 2012;33(5):580–592. doi: 10.1002/jcc.22885
  • Fuster F, Sevin A, Silvi B. Topological analysis of the electron localization function (ELF) applied to the electrophilic aromatic substitution. J Phys Chem A. 2000;104(4):852–858. doi: 10.1021/jp992783k
  • Clements RJ, Womack JC, Skylaris CK. Electron localisation descriptors in ONETEP: A tool for interpreting localisation and bonding in large-scale DFT calculations. Electron Struct. 2020;2(2):027001. doi: 10.1088/2516-1075/ab8d19
  • Tkachenko NV, Sun Z-M, Boldyrev AI. Record low ionization potentials of Alkali metal complexes with crown ethers and cryptands. Chemphyschem. 2019;20(16):2060–2062. doi: 10.1002/cphc.201900422
  • Chekhlov AN. Synthesis and crystal structure of (2.2.2-cryptand)potassium nitrate hydrate. Russ J Coord Chem. 2006;32(1):5–9. doi: 10.1134/S1070328406010027
  • Kosar N, Zari L, Ayub K, et al. NLO properties and electride characteristics of superalkalis doped all-cis-1. Optik. 2022;271(271):170139. doi: 10.1016/j.ijleo.2022.170139
  • Konarev DV, Khasanov SS, Ishikawa M, et al. Metallic conductivity versus charge disproportionation in C60 complexes with noninteger average charges on fullerene. Chem Select. 2016;1(2):323–330. doi: 10.1002/slct.201500021
  • Rehm E, Boldyrev AI, Schleyer PVR. Ab initio study of superalkalis. First ionization potentials and thermodynamic stability. Inorg Chem. 1992;31(23):4834–4842. doi: 10.1021/ic00049a022
  • Ahsin A, Jadoon T, Ayub K. M@[12-crown-4] and M@15-crown-5] where (M=li, Na, and K); the very first examples of non-conventional one alkali metal-containing alkalides with remarkable static and dynamic NLO response. Phys E Low-Dimens Syst Nanostruct. 2022;140:115170. doi: 10.1016/j.physe.2022.115170
  • Ahsin A, Shah AB, Ayub K. Germanium-based superatom clusters as excess electron compounds with significant static and dynamic NLO response; a DFT study. RSC Adv. 2022;12(1):365–377. doi: 10.1039/D1RA08192F
  • Wang J-J, Zhou Z-J, Bai Y, et al. A new strategy for simultaneously enhancing nonlinear optical response and electron stability in novel cup–saucer + –cage − -shaped sandwich electride molecules with an excess electron protected inside the cage. Dalton Trans. 2015;44(9):4207–4214. doi: 10.1039/C4DT03282A
  • Ahsin A, Ejaz I, Sarfaraz S, et al. Polaron formation in conducting polymers: a novel approach to designing materials with a larger NLO response. ACS Omega. 2024;9(12):14043–14053. doi: 10.1021/acsomega.3c09468
  • Ullah F, Kosar N, Ayub K, et al. Superalkalis as a source of diffuse excess electrons in newly designed inorganic electrides with remarkable nonlinear response and deep ultraviolet transparency: A DFT study. Appl Surf Sci. 2019;483:1118–1128. doi: 10.1016/j.apsusc.2019.04.042
  • Kosar N, Zari L, Ayub K, et al. Giant NLO response and ultraviolet transparency of superalakalis decorated C6O6Li6 complexes; a DFT perspective. Phys Scr. 2023;98(6):98 65909. doi: 10.1088/1402-4896/accf4b
  • Wang Y-F, Huang J, Jia L, et al. Theoretical investigation of the structures, stabilities, and NLO responses of calcium-doped pyridazine: alkaline-earth-based alkaline salt electrides. J Mol Graph Model. 2014;47:77–82. doi: 10.1016/j.jmgm.2013.11.003
  • Williams MD, Ford JS, Andrews DL. Hyper-Rayleigh scattering in centrosymmetric systems. J Chem Phys. 2015;143(12):124301. doi: 10.1063/1.4931584
  • Maina MR, Okamoto Y, Hamada K, et al. Effects of superposition of 532 nm and 1064 nm wavelengths in copper micro-welding by pulsed Nd: YAG laser. J Mater Process Technol. 2022;299:117388. doi: 10.1016/j.jmatprotec.2021.117388
  • Abel S, Eltes F, Ortmann JE, et al. Large pockels effect in micro- and nanostructured barium titanate integrated on silicon. Nat Mater. 2019;18(1):42–47. doi: 10.1038/s41563-018-0208-0
  • Shi Q, Dong L, Wang Y. Evaluating refractive index and birefringence of nonlinear optical crystals: classical methods and new developments. Chines J Struct Chem. 2023;42(1):100017. doi: 10.1016/j.cjsc.2023.100017
  • Lu Q, Bian W. The decay of dispersion interaction and its remarkable effects on the kinetics of activation reactions involving alkyl chains. J Phys Chem Lett. 2023;14(47):10642–10647. doi: 10.1021/acs.jpclett.3c02925
  • Yang X, Ma H, Lu Q, et al. Efficient method for numerical calculations of molecular vibrational frequencies by exploiting sparseness of Hessian matrix. J Phys Chem A. 2023;128(15):3024–3032. doi: 10.1021/acs.jpca.3c07645
  • Li F, Yang X, Liu X, et al. An Ab initio neural network potential energy surface for the dimer of formic acid and further quantum tunneling dynamics. ACS Omega. 2023;8(19):17296–17303. doi: 10.1021/acsomega.3c02169
  • Li F, Liu X, Yang X, et al. Quantum dynamics calculations on isotope effects of hydrogen transfer isomerization in formic acid dimer. Chin J Chem Phys. 2023;36(5):545–552. doi: 10.1063/1674-0068/cjcp2301009
  • Wu Y, Cao J, Ma H, et al. Conical intersection–regulated intermediates in bimolecular reactions: Insights from C(1D) + HD dynamics. Sci Adv. 2019;5(4):2375–2548. doi: 10.1126/sciadv.aaw0446
  • Cao J, Wu Y, Bian W. Ring polymer molecular dynamics of the C(1D)+H2 reaction on the most recent potential energy surfaces. Chin J Chem Phys. 2021;34(6):833–842. doi: 10.1063/1674-0068/cjcp2110197
  • Zhang C, Fu M, Shen Z, et al. Global analytical ab initio ground-state potential energy surface for the C(1D)+H2 reactive system. J Chem Phys. 2014;140(23):234301–234310. doi: 10.1063/1.4881896
  • Michalski M, Gordon AJ, Berski S. Topological analysis of the electron localisation function (ELF) applied to the electronic structure of oxaziridine: the nature of N-O bond. Struct Chem. 2019;30(6):2181–2189. doi: 10.1007/s11224-019-01407-9