199
Views
0
CrossRef citations to date
0
Altmetric
Engineering and Structural materials

Analysis of the temperature-dependent plastic deformation of single crystals of quinary, quaternary and ternary equiatomic high- and medium-entropy alloys of the Cr-mn-fe-co-ni system

ORCID Icon, , , , , , & show all
Article: 2376524 | Received 09 May 2024, Accepted 01 Jul 2024, Accepted author version posted online: 08 Jul 2024
Accepted author version

References

  • Cantor B, Chang ITH, Knight P, et al. Microstructural development in equiatomic multicomponent alloys. Mater Sci Eng A. 2004;375–377:213–218. DOI: 10.1016/j.msea.2003.10.257.
  • Yeh J-W, Chen S-K, Lin S-J, et al. Nanostructured High‐Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes. Adv Eng Mater. 2004;6:299–303. DOI: 10.1002/adem.200300567.
  • Miracle DB, Senkov ON. A critical review of high entropy alloys and related concepts. Acta Mater. 2017;122:448–511. DOI: 10.1016/j.actamat.2016.08.081.
  • George EP, Raabe D, Ritchie RO. High-entropy alloys. Nat Rev Mater. 2019;4:515–534. DOI: 10.1038/s41578-019-0121-4.
  • Inui H, Kishida K, Chen Z. Recent Progress in Our Understanding of Phase Stability, Atomic Structures and Mechanical and Functional Properties of High-Entropy Alloys. Mater Trans. 2022;63:394–401. DOI: 10.2320/matertrans.MT-M2021234.
  • Li Z, Pradeep KG, Deng Y, et al. Metastable high-entropy dual-phase alloys overcome the strength–ductility trade-off. Nature. 2016;534:227–230. DOI: 10.1038/nature17981.
  • Wei D, Li X, Schönecker S, et al. Development of strong and ductile metastable face-centered cubic single-phase high-entropy alloys. Acta Mater. 2019;181:318–330. DOI: 10.1016/j.actamat.2019.09.050.
  • Wang Z, Li L, Chen Z, et al. A new route to achieve high strength and high ductility compositions in Cr-Co-Ni-based medium-entropy alloys: A predictive model connecting theoretical calculations and experimental measurements. J Alloys Compd. 2023;959:170555. DOI: 10.1016/j.jallcom.2023.170555.
  • Fan Z, Li L, Chen Z, et al. Temperature-dependent yield stress of single crystals of non-equiatomic Cr-Mn-Fe-Co-Ni high-entropy alloys in the temperature range 10-1173 K. Acta Mater. 2023;246:118712. DOI: 10.1016/j.actamat.2023.118712.
  • Garcia Filho FDC, Ritchie RO, Meyers MA, et al. Cantor-derived medium-entropy alloys: bridging the gap between traditional metallic and high-entropy alloys. J Mater Res Technol. 2022;17:1868–1895. DOI: 10.1016/j.jmrt.2022.01.118.
  • Yin B, Yoshida S, Tsuji N, et al. Yield strength and misfit volumes of NiCoCr and implications for short-range-order. Nat Commun. 2020;11:2507. DOI: 10.1038/s41467-020-16083-1.
  • Zhang R, Zhao S, Ding J, et al. Short-range order and its impact on the CrCoNi medium-entropy alloy. Nature. 2020;581:283–287. DOI: 10.1038/s41586-020-2275-z.
  • Li L, Chen Z, Kuroiwa S, et al. Evolution of short-range order and its effects on the plastic deformation behavior of single crystals of the equiatomic Cr-Co-Ni medium-entropy alloy. Acta Mater. 2023;243:118537. DOI: 10.1016/j.actamat.2022.118537.
  • Zhang Z, Sheng H, Wang Z, et al. Dislocation mechanisms and 3D twin architectures generate exceptional strength-ductility-toughness combination in CrCoNi medium-entropy alloy. Nat Commun. 2017;8:14390. DOI: 10.1038/ncomms14390.
  • Wu Z, Bei H, Pharr GM, et al. Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures. Acta Mater. 2014;81:428–441. DOI: 10.1016/j.actamat.2014.08.026.
  • Inui H, Kishida K, Li L, et al. Uniaxial mechanical properties of face-centered cubic single- and multiphase high-entropy alloys. MRS Bull. 2022;47;168–174. DOI: 10.1557/s43577-022-00280-y.
  • Wu Z, Bei H, Otto F, et al. Recovery, recrystallization, grain growth and phase stability of a family of FCC-structured multi-component equiatomic solid solution alloys. Intermetallics. 2014;46:131–140. DOI: 10.1016/j.intermet.2013.10.024.
  • Kawamura M, Asakura M, Okamoto NL, et al. Plastic deformation of single crystals of the equiatomic Cr−Mn−Fe−Co−Ni high-entropy alloy in tension and compression from 10 K to 1273 K. Acta Mater. 2021;203:116454. DOI: 10.1016/j.actamat.2020.10.073.
  • Li L, Chen Z, Kuroiwa S, et al. Tensile and compressive plastic deformation behavior of medium-entropy Cr-Co-Ni single crystals from cryogenic to elevated temperatures. Int J Plast. 2022;148:103144. DOI: 10.1016/j.ijplas.2021.103144.
  • Li L, Chen Z, Yuge K, et al. Plastic deformation of single crystals of the equiatomic Cr-Fe-Co-Ni medium entropy alloy – A comparison with Cr-Mn-Fe-Co-Ni and Cr-Co-Ni alloys. Int J Plast. 2023;169:103732. DOI: 10.1016/j.ijplas.2023.103732.
  • Toda-Caraballo I, Rivera-Díaz-del-Castillo PEJ. Modelling solid solution hardening in high entropy alloys. Acta Mater. 2015;85:14–23. DOI: 10.1016/j.actamat.2014.11.014.
  • Okamoto NL, Yuge K, Tanaka K, et al. Atomic displacement in the CrMnFeCoNi high-entropy alloy – A scaling factor to predict solid solution strengthening. AIP Adv. 2016;6:125008. DOI: 10.1063/1.4971371.
  • Schneider M, Laplanche G. Effects of temperature on mechanical properties and deformation mechanisms of the equiatomic CrFeNi medium-entropy alloy. Acta Mater. 2021;204:116470. DOI: 10.1016/j.actamat.2020.11.012.
  • Zunger A, Wei S-H, Ferreira LG, et al. Special quasirandom structures. Phys Rev Lett. 1990;65:353–356. DOI: 10.1103/PhysRevLett.65.353.
  • Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B. 1996;54:11169–11186. DOI: 10.1103/PhysRevB.54.11169.
  • Abuzaid W, Sehitoglu H. Critical resolved shear stress for slip and twin nucleation in single crystalline FeNiCoCrMn high entropy alloy. Mater Charact. 2017;129:288–299. DOI: 10.1016/j.matchar.2017.05.014.
  • Wu Z, Gao YF, Bei H. Single crystal plastic behavior of a single-phase, face-center-cubic-structured, equiatomic FeNiCrCo alloy. Scr Mater. 2015;109:108–112. DOI: 10.1016/j.scriptamat.2015.07.031.
  • Abuzaid W, Patriarca L. A study on slip activation for a coarse-grained and single crystalline CoCrNi medium entropy alloy. Intermetallics. 2020;117:106682. DOI: 10.1016/j.intermet.2019.106682.
  • Gali A, George EP. Tensile properties of high- and medium-entropy alloys. Intermetallics. 2013;39:74–78. DOI: 10.1016/j.intermet.2013.03.018.
  • Kocks UF, Argon AS, Ashby MF. Thermodynamics and Kinetics of Slip. Prog Mater Sci. First edit. 1975;19:1–291.
  • Wille TH, Schwink C. Precision measurements of critical resolved shear stress in CuMn alloys. Acta Metall. 1986;34:1059–1069. DOI: 10.1016/0001-6160(86)90216-6.
  • Wille TH, Gieseke W, Schwink CH. Quantitative analysis of solution hardening in selected copper alloys. Acta Metall. 1987;35:2679–2693. DOI: 10.1016/0001-6160(87)90267-7.
  • Okamoto NL, Fujimoto S, Kambara Y, et al. Size effect, critical resolved shear stress, stacking fault energy, and solid solution strengthening in the CrMnFeCoNi high-entropy alloy. Sci Rep. 2016;6:35863. DOI: 10.1038/srep35863.
  • Pfetzing-Micklich J, Fox F, Thome P, et al. Increasing the friction stress decreases the size dependence of strength in a family of face-centered cubic high- and medium-entropy alloy micropillars. Mater Sci Eng A. 2023;885:145548. DOI: 10.1016/j.msea.2023.145548.
  • Suzuki T. On the Studies of Solid Solution Hardening. Jpn J Appl Phys. 1981;20:449. DOI: 10.1143/JJAP.20.449.
  • Tirunilai AS, Hanemann T, Reinhart C, et al. Comparison of cryogenic deformation of the concentrated solid solutions CoCrFeMnNi, CoCrNi and CoNi. Mater Sci Eng A. 2020;783:139290. DOI: 10.1016/j.msea.2020.139290.
  • Schwarz RB, Isaac RD, Granato A V. Dislocation Inertial Effects in the Plastic Deformation of Dilute Alloys of Lead and Copper. Phys Rev Lett. 1977;38:554–557. DOI: 10.1103/PhysRevLett.38.554.
  • Moriya T, Suzuki T. Anomalous Plasticity of Alloys at Low Temperatures. J Phys Soc Japan. 1987;56:3941–3950. DOI: 10.1143/JPSJ.56.3941.
  • Varvenne C, Luque A, Curtin WA. Theory of strengthening in fcc high entropy alloys. Acta Mater. 2016;118:164–176. DOI: 10.1016/j.actamat.2016.07.040.
  • Tsai C-W, Lee C, Lin P-T, et al. Portevin-Le Chatelier mechanism in face-centered-cubic metallic alloys from low to high entropy. Int J Plast. 2019;122:212–224. DOI: 10.1016/j.ijplas.2019.07.003.
  • Leyson GPM, Curtin WA. Friedel vs. Labusch: the strong/weak pinning transition in solute strengthened metals. Philos Mag. 2013;93:2428–2444. DOI: 10.1080/14786435.2013.776718.
  • Butt MZ, Feltham P. Solid-solution hardening. Acta Metall. 1978;26:167–173. DOI: 10.1016/0001-6160(78)90213-4.
  • Butt MZ, Feltham P. Solid-solution hardening. J Mater Sci. 1993;28:2557–2576. DOI: 10.1007/BF00356192.
  • Butt MZ. Stress equivalence of solid-solution hardening. J Phys Condens Matter. 1990;2:5797–5808. DOI: 10.1088/0953-8984/2/26/017.
  • Basinski ZS, Foxall RA, Pascual R. Stress equivalence of solution hardening. Scr Metall. 1972;6:807–814. DOI: 10.1016/0036-9748(72)90052-X.
  • Jax P, Kratochvil P, Haasen P. Solid solution hardening of gold and other f.c.c. single crystals. Acta Metall. 1970;18:237–245. DOI: 10.1016/0001-6160(70)90029-5.
  • Labusch R. A Statistical Theory of Solid Solution Hardening. Phys status solidi. 1970;41:659–669. DOI: 10.1002/pssb.19700410221.
  • Seeger A, Schöck G. The splitting of dislocations in metals with close-packed lattices. Acta Metall. 1953;1:519–530. DOI: 10.1016/0001-6160(53)90082-0.
  • Laplanche G, Gadaud P, Horst O, et al. Temperature dependencies of the elastic moduli and thermal expansion coefficient of an equiatomic, single-phase CoCrFeMnNi high-entropy alloy. J Alloys Compd. 2015;623:348–353. DOI: 10.1016/j.jallcom.2014.11.061.
  • Laplanche G, Gadaud P, Bärsch C, et al. Elastic moduli and thermal expansion coefficients of medium-entropy subsystems of the CrMnFeCoNi high-entropy alloy. J Alloys Compd. 2018;746:244–255. DOI: 10.1016/j.jallcom.2018.02.251.
  • Ledbetter H. Low-temperature magnetic-elastic anomalies in fcc Fe-Cr-Ni alloys. Phys B Condens Matter. 1990;161:91–95. DOI: 10.1016/0921-4526(89)90111-7.
  • Schwarz RB, Labusch R. Dynamic simulation of solution hardening. J Appl Phys. 1978;49:5174–5187. DOI: 10.1063/1.324413.
  • Ninomiya T. Frictional Force Acting on a Dislocation – Fluttering Mechanism –. J Phys Soc Japan. 1974;36:399–405. DOI: 10.1143/JPSJ.36.399.
  • Chen Q, Sundman B. Calculation of debye temperature for crystalline structures—a case study on Ti, Zr, and Hf. Acta Mater. 2001;49:947–961. DOI: 10.1016/S1359-6454(01)00002-7.
  • Granato A V. Dislocation Inertial Effects in the Plasticity of Superconductors. Phys Rev B. 1971;4:2196–2201. DOI: 10.1103/PhysRevB.4.2196.
  • Hikata A, Elbaum C. Ultrasonic Attenuation in Normal and Superconducting Lead; Electronic Damping of Dislocations. Phys Rev Lett. 1967;18:750–752. DOI: 10.1103/PhysRevLett.18.750.
  • Tsai K-Y, Tsai M-H, Yeh J-W. Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys. Acta Mater. 2013;61:4887–4897. DOI: 10.1016/j.actamat.2013.04.058.
  • Vaidya M, Trubel S, Murty BS, et al. Ni tracer diffusion in CoCrFeNi and CoCrFeMnNi high entropy alloys. J Alloys Compd. 2016;688:994–1001. DOI: 10.1016/j.jallcom.2016.07.239.
  • Vaidya M, Pradeep KG, Murty BS, et al. Bulk tracer diffusion in CoCrFeNi and CoCrFeMnNi high entropy alloys. Acta Mater. 2018;146:211–224. DOI: 10.1016/j.actamat.2017.12.052.
  • Sakamoto M. Diffusion Equation and Cottrell Atmosphere Dragging of Edge Dislocation in High Concentration Solid Solutions. Mater Trans JIM. 1989;30:337–344. DOI: 10.2320/matertrans1989.30.337.